Abstract Read Permissions

Fractional Permissions without the Fractions

Alex Summers
ETH Zurich

Joint work with: Stefan Heule, Rustan Leino, Peter Miiller
ETH Zurich  Microsoft Research ETH Zurich




Overview

» Verification of (race-free) concurrent programs
using fractional permissions

» Background

- Identify the problem
 Abstract read permissions
- Handling calls, fork/join

« Permission expressions
 Conclusions



Fractional Permissions soyland, sas’03

 Provide a way of describing disciplined (race-free)
use of shared memory locations

- Many readers v onewriter v  never both

« Heap locations are managed using permissions

« Permission amounts are fractions p from [0,1]
s p=0 (no permission)
s 0<p<1 (read permission)
» p=1 (read/write permission)

« Permissions are passed between methods/threads
= can be split and recombined, never duplicated



Notation

- Examples shown using Implicit Dynamic
Frames assertions [Smans’09].

» Permissions represented in assertions by
“accessibility predicates™: acc(x.f, p)
= means we have permission p to location x.f
- Permissions treated multiplicatively; i.e.,
» ace(x.f, p) && ace(x.f, p) = acc(x.1, 2p)
 Related to Sep. Logic [Parkinson/Summers’12]
> Roughly: read acc(x.f,p) as x.f >
 This work applies to any such program logic
« We use Chalice language syntax [ Leino/Miiller]



Inhale and Exhale

« “inhale P” and “exhale P” are used to encode
transfers between threads/calls
 “Inhale P” means: |
void m()
= assume heap properties in p requires P
s galn permissions in p ensures Q
» “exhale P” means: {
= assert heap properties in p
= check and give up permissions

= havoc heap locations to which
no permission is now held



Inhale and Exhale

« “Inhale P” and “exhale P” are used to encode

transfers between threads/calls
 “Iinhale P” means:

= assume heap properties in p

s galn permissions in p
» “exhale P” means:

= assert heap properties in p

= check and give up permissions

= havoc heap locations to which
no permission is now held

void m()
requires P
ensures Q

{

call m()



Inhale and Exhale

e “Inhale P” and “exhale P” are used to encode
transfers between threads/calls

e “Inhale P” means:

. i void m()
= assume heap properties in p requires P
= galn permissions in p Tnsures Q
» “exhale P” means: // inhale P
= assert heap properties in p
= check and give up permissions call m()

= havoc heap locations to which
no permission is now held



Inhale and Exhale

e “Inhale P” and “exhale P” are used to encode
transfers between threads/calls

e “Inhale P” means:

. i void m()
= assume heap properties in p requires P
= galn permissions in p Tnsures Q
» “exhale P” means: // inhale P
= assert heap properties in p ce
. . // exhale P
= check and give up permissions call m()

= havoc heap locations to which
no permission is now held



Inhale and Exhale

e “Inhale P” and “exhale P” are used to encode
transfers between threads/calls

e “Inhale P” means:

. i void m()
= assume heap properties in p requires P
= galn permissions in p Tnsures Q
» “exhale P” means: // inhale P
= assert heap properties in p s
heck and o .. // exhale P
= check and give up permissions call m()
= havoc heap locations to which // inhale Q

no permission is now held



Inhale and Exhale

e “Inhale P” and “exhale P” are used to encode
transfers between threads/calls

e “Inhale P” means:

. i void m()
= assume heap properties in p requires P
= galn permissions in p Tnsures Q
» “exhale P” means: // inhale P
= assert heap properties in p s
heck and o .. // exhale P
= check and give up permissions call m()
= havoc heap locations to which // inhale Q

no permission is now held P
// exhale Q



Inhale and Exhale

e “Inhale P” and “exhale P” are used to encode
transfers between threads/calls

e “Inhale P” means:

. i void m()
= assume heap properties in p requires P
= galn permissions in p Tnsures Q
» “exhale P” means: // inhale P
= assert heap properties in p s
heck and o .. // exhale P
= check and give up permissions call m()
= havoc heap locations to which // inhale Q

no permission is now held L
// exhale Q



Difficulties with Fractional Permissions

« Concrete fractions cause tension: caller vs callee

method evaluate (Cell c¢)
requires acc(c.f, ?)
ensures acc(c.f, ?)

{

/* ... calculations ... */

}




Difficulties with Fractional Permissions

« Concrete fractions cause tension: caller vs callee

method evaluate (Cell c) method main (Cell c)
requires acc(c.f, 2/3) requires acc(c.f, 1/2)
ensures acc(c.f, 2/3) {

{
/* ... calculations ... */ call evaluate(c) X

}




Difficulties with Fractional Permissions

» Concrete fractions cause tension: caller vs callee
= Reuse can be made difficult
s Framing may be compromised

- Aliasing information is relevant to values chosen

method equals (Cell c)
requires acc(this.f, ?) && acc(c.f, ?)
ensures acc(this.f, ?) && acc(c.f, ?)

{

/* ... comparisons ... */

}




Difficulties with Fractional Permissions

« Concrete fractions cause tension: caller vs callee

= Reuse can be made difficult
s Framing may be compromised

- Aliasing information is relevant to values chosen

{

}

method equals (Cell c)

requires acc(this.f,
ensures acc(this.f,

/* ... comparisons ...

What if
gz this=c?
2/3) s&& acc(c.f, 2/3)°°

2/3) && acc(c.f, 2/3)

*/




Difficulties with Fractional Permissions

» Concrete fractions cause tension: caller vs callee
= Reuse can be made difficult
s Framing may be compromised

- Aliasing information is relevant to values chosen

method equals (Cell c)
requires acc(this.f, 1/3) && acc(c.f, 1/3) s&&

(this !'= ¢ ==> aec(this.f, 1/3) && acec(c.f, 1/3))
ensures acc(this.f, 1/3) && ace(c.f, 1/3) &&
(this != ¢ ==> aecc(this.f, 1/3) && acc(c.f, 1/3))

{

/* ... comparisons ... */

}




Difficulties with Fractional Permissions

» Concrete fractions cause tension: caller vs callee
= Reuse can be made difficult
s Framing may be compromised
- Aliasing information is relevant to values chosen
« Recursive methods require parameterisation

method m(Cell c)
requires acc(c.f, ?)
ensures acc(c.f, ?)

// do stuff
call m(c)
// do more stuff




Difficulties with Fractional Permissions

» Concrete fractions cause tension: caller vs callee
= Reuse can be made difficult
s Framing may be compromised
- Aliasing information is relevant to values chosen
« Recursive methods require parameterisation

method m(Cell ¢, Perm p)
requires acc(c.f, ?)
ensures acc(c.f, ?)

// do stuff
call m(c)
// do more stuff




Difficulties with Fractional Permissions

» Concrete fractions cause tension: caller vs callee
= Reuse can be made difficult
s Framing may be compromised
- Aliasing information is relevant to values chosen
« Recursive methods require parameterisation

method m(Cell ¢, Perm p)
requires acc(c.f, p)
ensures acc(c.f, p)

// do stuff
call m(c)
// do more stuff




Difficulties with Fractional Permissions

» Concrete fractions cause tension: caller vs callee
= Reuse can be made difficult
s Framing may be compromised
- Aliasing information is relevant to values chosen
« Recursive methods require parameterisation

method m(Cell ¢, Perm p)
requires acc(c.f, p)
ensures acc(c.f, p)

// do stuff
call m(c, p/2)
// do more stuff




Difficulties with Fractional Permissions

» Concrete fractions cause tension: caller vs callee
> Reuse can be made difficult
s Framing may be compromised
- Aliasing information is relevant to values chosen
« Recursive methods require parameterisation
» Manual book-keeping is tedious
= Creates “noise” in specifications and new mistakes

= Programmers ideally only need care about:
- when does a thread have full (write) permission?
- when does a thread have some (read) permission?
- ... and differences in amounts of permission (...later)




Example: Workers Tree i

.

[ )

class Node ({ Worker 2 Worker 3
Node 1, r /ﬂ{// \\\ /ﬁ<// \\\
Outcome method work (Data data) [N £

requires «permission to data.f» W9rk§r4 Wo.rke.r5 W9rk§r6 Wt?rkérs

ensures «permission to data.f» P. P k. 4 {. .A y” q
{

Outcome out := new Outcome ()

if (1 != null) left := fork l.work(data) How much permission?

if (r != null) right := fork r.work(data)

/* perform work on this node, using data.f */

if (1 '= null) out.combine(join left)

if (r '= null) out.combine(join right)

return out




Abstract Read Permissions

 Introduce abstract read permissions: acc(o.f,rd)

= corresponds to a fixed, positive, and unknown
fraction

= positive amount: allows reading the location o.f
» Specifications are written using
= acc(o.f,1) to represent the full permission
(read/write)
s acc(o.f,rd) for read permissions
- In general, different read permissions can
correspond to different fractions



Matching rd permissions

- Permission is often required and returned later

method evaluate (Cell c) method main (Cell c)
requires acc(c.f, rd) requires acc(c.f, 1)
ensures acc(c.f, rd) {

{ c.f :=0
/* ... calculations ... */ call evaluate (c)

} c.f :=1

}

« Rule: All read permissions acc(o.f,rd) in pre- and
postconditions correspond to the same amount



R ———
Encoding Method Calls

We use Mask [o. £] to denote the permission amount heldto o. £

method m(Cell c)
requires acc(c.f,rd)
ensures acc(c.f,rd)

// do stuff

call m(c)

// do more stuff




Encoding

Method Calls

Method initial state: Vo, £. Mask[o.f] == 0

method m(Cell c)

// do stuff

call m(c)

// d;\::jjiigg;

requires acc(c.f,rd)
ensures acc(c.f,rd)

Declare fresh constant m,, to interpret rd
< amounts, and assume 0 < m, <1

Inhale precondition: Mask[c.f] += my

Declare 0 < m.,;; < 1 (for rd in recursive call)

Exhale precondition for recursive call

* Check that we have some permission
assert Mask[c.f] > O

« Constrain .,y to be smaller than what we have
assume 7. < Mask[c.f]

« Give away this amount: Mask[c.f] -= Ty

» Havoc heap value at c. £ if no permission (false)

Inhale postcondition: Mask[c.f] += Ty

Exhale postcondition
* Check permission: assert Mask([c.f] >= my
* Remove permission: Mask[c.f] —-= mpy




Revisiting aliasing

 Recall previous example:

method equals (Cell c)
requires acc(this.f, ?) && acc(c.f, ?)

ensures acc(this.f, ?) && acc(c.f, ?)

{

/* ... comparisons ... */

}




Revisiting aliasing

 Recall previous example:

method equals (Cell c)
requires acc(this.f, rd) && acc(c.f, rd)
ensures acc(this.f, rd) && acc(c.f, rd)

{

/* ... comparisons ... */

}

 Consider the encoding of a call to this method:
assert Mask|[this.f] > 0;

assume 7., < Mask[this.f];
Mask[this.f] -= meq; - © ©

assert Mask[c.f] > O;

assume 7. < Mask[c.f];
MaSk[C.f] - T[CG.H;



Revisiting aliasing

 Recall previous example:

method equals (Cell c)
requires acc(this.f, rd) && acc(c.f, rd)
ensures acc(this.f, rd) && acc(c.f, rd)

{

/* ... comparisons ... */

}

 Consider the encoding of a call to this method:
assert Mask|[this.f] > 0;

assume 7., < Mask[this.f];
Mask[this.f] -= me; - © ©
assert Mask[c.f] > 0O;

o
assume 7.5 < Mask[c.f]; © O
Mask([c.f] == Tcans

Implicitly, we
assume 2 * .4y to
be smaller than the
amount first held




Workers example revisited

Worker 1

class Node { ////
Node 1,r /ﬁ%“

Worker 2 Worker 3

Outcome method work (Data data)
requires «permission to data.f» \\
£

e

ensures «permission to data.f»

{ Worker 4 Worker 5 Worker 6 Worker 8
Outcome out := new Outcome () > P 9 PG P » P
if (1 !'= null) left := fork 1l.work(data)
if (r != null) right := fork r.work(data)

/* perform work on this node, using data.f */
if (1 '= null) out.combine(join left)
if (r !'= null) out.combine(join right)

return out




Workers example revisited

class Node {
Node 1,r

» rd-permission
sufficient for
Outcome method work (Data data) }1. 1
requires acc(data.f, rd) t 1S examp €

ensures acc (data.f, rd)

Outcome out := new Outcome () Some (unknown) amount(s)
are given away

if (1 != null) left := fork l.work(data) _——

if (r != null) right := fork r.work(data)

/* perform work on this node, using data.f */
if (1 '= null) out.combine(join left)
if (r != null) out.combine (join right)ﬁ And retrieved again later on
return out




class Management ({
Data d; // shared data Intuitively, ask returns the

permission it was passed minus the
void method manage (Workers w) { |PETTUssion held by the forked thread

// ... make up SOmiézgiﬁzjii::::::i////,,,
outl := call w.ask(taskl, d);

QUEZ o= c?.ll weasb(taskz, @), How do we know we get back all
// ... drink coffee the permissions we gave away?

join outl; join out?Z;
d.f := // modify data

class Workers {

Outcome method do (Task t, Data d)

do requires read access to
(field £ of) the shared data token<do> method ask (Task t, Data d)

ask requires read access V/Out := fork do(t,d);

to the shared data, and return out;
gives some permission to }
the newly-forked thread )




Permission expressions

- We need a way to express (unknown) amounts
of read permission held by a forked thread

« We also need to be able to express the difference
between two permission amounts

- We generalise our permissions: acc(e.f, p)

= where P is a permission expression:
1 (and other concrete fractions)
rd (abstract read permission, as before)
rd(tk) where tk is a token for a forked thread
p, + P, Or p, - p, (sums and differences)

- Easy to encode, and is much more expressive...



class Management ({

requires acc(d.f,
Data d; // shared data ensures acc (d.f,

1)
1)

volid method manage (Workers w) {

// ... make up some work
outl := call w.ask(taskl, d);
out?2 := call w.ask(task2, d);
// ... drink coffee

join outl; join out?Z;

d.f := // modify data

class Workers {

Outcome method do (Task t,
requires acc (d.f, rd)L//;77% ce )
ensures acc(d.f, rd) token<do> method ask (Task t,
{
out := fork do(t,d);

rn'l--nrn N11t e

requires acc (d.f,
ensures acc (d.f,

Data d)

Data d)

rd - rd(result))



class Management ({

requires acc(d.f,
Data d; // shared data ensures acc (d.f,

1)
1)

volid method manage (Workers w) {

// ... make up some work // 1
outl := call w.ask(taskl, d);

out?2 := call w.ask(task2, d);

// ... drink coffee

join outl; join out?Z;

d.f := // modify data

class Workers {

Outcome method do (Task t,
requires acc (d.f, rd)L//;77% ce )
ensures acc(d.f, rd) token<do> method ask (Task t,
{
out := fork do(t,d);

rn'l--nrn N11t e

requires acc (d.f,
ensures acc (d.f,

Data d)

Data d)

rd - rd(result))



class Management ({ requires acc(d.f, 1)
Data d; // shared data ensures acc(d.f, 1)
volid method manage (Workers w) {

// ... make up some work // 1

outl := call w.ask(taskl, d); // 1 - rd(outl)
out?2 := call w.ask(task2, d);

// ... drink coffee

join outl; join out?Z;

d.f := // modify data

class Workers {

Outcome method do (Task t,
requires acc (d.f, rd)L//;77% ce )
ensures acc(d.f, rd) token<do> method ask (Task t,
{
out := fork do(t,d);

rn'l--nrn N11t e

requires acc (d.f,
ensures acc (d.f,

Data d)

Data d)

rd - rd(result))



class Management { requires acc(d.f, 1)

Data d; // shared data ensures acc(d.f, 1)

volid method manage (Workers w) {

// ... make up some work // 1

outl := call w.ask(taskl, d); // 1 - rd(outl)

out2 := call w.ask(task2, d); // 1 - rd(outl) - rd(out2)
// ... drink coffee

join outl; join out?Z;

d.f := // modify data

class Workers {
Outcome method do (Task t, Data d)

requires acc (d.f, rd)L//;77% cee
ensures acc(d.f, rd) token<do> method ask (Task t, Data d)
{
out := fork do(t,d);
retiirn At .
requires acc(d.f, rd)
ensures acc(d.f, rd - rd(result))




class Management ({ requires acc(d.f, 1)
Data d; // shared data ensures acc(d.f, 1)
volid method manage (Workers w) {
// ... make up some work // 1
outl := call w.ask(taskl, d); // 1 - rd(outl)
out2 := call w.ask(task2, d); // 1 - rd(outl) - rd(out2)
// ... drink coffee
join outl; join out2; // 1
d.f := // modify data
} class Workers {
Outcome method do (Task t, Data d)
requires acc(d.f, rd)L//;77% cee
ensures acc(d.f, rd) token<do> method ask (Task t, Data d)
{
out := fork do(t,d);
reatiirn At .
} requires acc(d.f, rd)
\ ensures acc(d.f, rd - rd(result))




class Management ({ requires acc(d.f, 1)
Data d; // shared data ensures acc(d.f, 1)
volid method manage (Workers w) {

// ... make up some work // 1

outl := call w.ask(taskl, d); // 1 - rd(outl)
out2 := call w.ask(task2, d); // 1 - rd(outl)
// ... drink coffee

join outl; join out2; // 1

d.f := // modify data //  can write

— rd(out2)

class Workers {

Outcome method do (Task t, Data d)
requires acc (d.f, rd)L//;77% ce )
ensures acc(d.f, rd) token<do> method ask (Task t,
{
out := fork do(t,d);

rn'l--nrn N11t e

requires acc (d.f,
ensures acc (d.f,

rd)
rd - rd(result))

Data d)



Conclusions

 Presented a specification methodology
= similar expressiveness to fractional permissions
= avoids concrete values for read permissions
= allows the user to reason about read/write abstractly
 Provided an efficient encoding (details in paper)
« Soundness argument also in the paper
- Implemented in the Chalice tool
» fork/join, monitors, channels, loops, predicates
= underlying type for permissions uses Z3 reals
= performance similar to with concrete fractions only



N
Future Work

« We cannot express the permission left over after
we fork off an unbounded number of threads
» mathematical sums in permission expressions

= e.g.,acc(x, 1 - Z:i rd(tk;))

- Exploit fact that abstract read permissions can
be repeatedly constrained from above

= immutability/frozen objects (work in progress)

- rd amounts encoded as prophecy variables
s treatment could be generalised to allow more uses
= e.g., equal split amongst unknown no. of threads



ERAl.

Questions?




