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ABSTRACT
Opaque code, which is executable but whose source is unavail-
able or hard to process, can be problematic in a number of
scenarios, such as program analysis. Manual construction of
models is often used to handle opaque code, but this process
is tedious and error-prone. (In this paper, we use model to
mean a representation of a piece of code suitable for program
analysis.) We present a novel technique for automatic gener-
ation of models for opaque code, based on program synthesis.
The technique intercepts memory accesses from the opaque
code to client objects, and uses this information to construct
partial execution traces. Then, it performs a heuristic search
inspired by Markov Chain Monte Carlo techniques to dis-
cover an executable code model whose behavior matches
the opaque code. Native execution, parallelization, and a
carefully-designed fitness function are leveraged to increase
the effectiveness of the search. We have implemented our
technique in a tool Mimic for discovering models of opaque
JavaScript functions, and used Mimic to synthesize correct
models for a variety of array-manipulating routines.

Categories and Subject Descriptors
I.2.2 [Automatic Programming]: Program synthesis

Keywords
Opaque code, program synthesis, MCMC, model generation,
JavaScript

1. INTRODUCTION
We consider the problem of computing models from opaque

code. By opaque, we mean code that is executable but
whose source is unavailable or otherwise difficult to process.
Consider the case of a JavaScript runtime, which provides
“native” implementation of a large number of utility functions,
such as array functions. Natively-implemented methods are
opaque to an analysis tool built to analyze JavaScript sources,
and are a hindrance to effective analysis because the tool
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must make either unsound or overly conservative assumptions
on what those native methods might do. This same situation
arises for many languages and runtimes.

Opacity also is a concern when a third-party library is dis-
tributed in deliberately obfuscated form that hinders static
analysis. In JavaScript, for example, an obfuscator might
replace access to fields by computed names, e.g., transform-
ing y = x.foo to p = ["o","fo"]; y = x[p[1]+p[0]]. Such
changes can foil a static analyzer’s ability to reason pre-
cise about data flow through the heap.

Models provide an alternate, easy to analyze representation
of the opaque code. Sometimes, models can be written by
hand; however, this is tedious and error prone, and requires
understanding of how the opaque code works. A need for
better, automated ways of creating models has been argued
in the literature [10, 19, 7, 11].

In this paper, we show a new, automatic way of creating
models for opaque functions, based on a novel search-based
program synthesis strategy. We observe that the behavior
of an opaque function can often be indirectly observed by
intercepting accesses to memory shared between the client
and the opaque code. (Here, “shared” is in the sense of an
object that is passed as a parameter to a called function
and has nothing to do with concurrency.) In most common
dynamic languages (e.g., JavaScript, Lua, Python, Ruby),
interception of accesses to shared objects can be achieved
using indirection via proxy objects (discussed in more detail
in Section 4). In this paper, we show that, surprisingly, it is
in fact possible to generate useful models of opaque functions
based solely on observation of these shared memory accesses.

Given a set of inputs for an opaque function, our technique
collects traces of (shared) memory accesses to those inputs
by running the function against those inputs and recording
the intercepted accesses. It then carries out a random search,
inspired by Markov Chain Monte Carlo (MCMC) sampling,
to synthesize from scratch a function whose execution re-
sults in the same sequence of reads and writes. Our strategy
is a “generate-and-test” strategy, leveraging efficient native
execution—simply running it—to test the quality of candi-
date models. Comparison of quality of models is done using
a carefully designed fitness function that takes into account
the degree to which a model matches the available traces.
Native execution lets the technique run tens of thousands
of trials per minute, and it yields models that are in fact
concrete code. Thus, our models are agnostic to whatever
abstraction a program analysis wishes to employ. Figure 2
shows the model that our approach recovers for the Java-
Script Array.prototype.shift method. Notice that the model

1



includes complex control-flow constructs in addition to the
elementary statements.
Related approaches The problem of generating an imple-
mentation from a trace of actions is not new, but to the
best of our knowledge, our technique is new. Closely re-
lated work [10, 6] in this area has used the concept of a
version-space algebra to search through a space of candidate
programs. In version-space algebra, a domain-specific data
structure encodes all programs that are consistent with the
traces seen so far. When a new trace is presented, the data
structure is adjusted to eliminate those programs that would
be inconsistent with this new trace. The final space can be
ranked using domain-specific insights. The success of the
version-space technique depends on careful design both of
the space of domain-specific programs and of the data struc-
ture that represents them, in such a way that the knowledge
embedded in a new trace can be factored in efficiently [6].

While the version-space algebra approach has been very
successful in specific domains such as spreadsheet manipu-
lation, its success has not been shown on general-purpose
programs. The work by Lau et al. [10] handles only the
situation in which the complete trace with the state of all
variables is given at each step, along with the knowledge of
the program counter; this simplifies the search space con-
siderably. Given our execution traces, which contain only
shared memory accesses and no program counter information,
there is not clear way to represent all consistent programs in
a compact data structure that can be efficiently updated for
new traces.

Other recent work uses an “oracle-guided” approach to
model generation, based on constraint generation and SMT
solvers [15, 8]. The generated constraints allow for a model
to be constructed from pre-defined “building blocks” or “com-
ponents,” and they ensure the model is consistent with input-
output examples obtained from running the opaque code.
Here, the limitation is that the set of building blocks must
be chosen very carefully to make the constraint problem
tractable [15]—it is unclear if such an approach could scale
to generate models as complex as that of Figure 2 without
excessive hand-tuning.

The alternative, then, is to adopt a generate-and-test strat-
egy, and the important question is how to organize the gen-
eration of candidates so as to not have to evaluate enormous
spaces (even if bounded) of programs exhaustively. In this
regard, recent work [4] has shown the promise of genetic algo-
rithms to synthesize patches to fix buggy programs. In that
work, the operations of mutation and crossover are applied
to an existing defective program that has both passing and
failing test inputs. Mutation is applied by grafting existing
code exercised in failing inputs, and this contains the search
space to manageable size. Since our problem is to synthesize
code from just the execution traces, we cannot readily adopt
this method: there is no place to graft from. Nevertheless,
this work has strongly inspired our own work in its use of
statistical techniques to explore an enormous search space of
code fragments.

For our setting, an approach inspired by MCMC sampling
seems to be an effective search strategy, and this is borne
out by our results.
Overview of Results We have implemented our approach
in a tool called Mimic for JavaScript. It collects traces
by wrapping function parameters with JavaScript proxy ob-
jects (see Section 4). We have found Mimic to be surpris-

1 function shift(arg0) {
2 var n0 = arg0.length
3 if (n0) {
4 var n1 = arg0 [0]
5 for (var i = 0; i < (n0 -1); i += 1) {
6 var n2 = (i+1) in arg0
7 if (n2) {
8 var n3 = arg0[i+1]
9 arg0[i] = n3

10 } else {
11 delete arg0[i]
12 }
13 }
14 delete arg0[i]
15 arg0.length = i
16 return n1
17 } else {
18 arg0.length = 0
19 }
20 }

Figure 2: Model of Array.prototype.shift generated by
our tool.

ingly effective in computing models of several of the array-
manipulating routines in JavaScript runtime. In fact, the
models generated by Mimic have occasionally been of higher
quality than the hand-written models available with WALA,
a production-quality program analysis system [20]. When it
succeeded, Mimic required, on average, roughly 60 seconds
per method, evaluating hundreds of thousands of candidates
in the process. The technique is easily parallelized, and in
our evaluation we leveraged a 28-core machine for improved
performance. Mimic was just as capable in extracting mod-
els from obfuscated versions of the same library methods
written in JavaScript. Our implementation is available at
https://github.com/Samsung/mimic.

As with any search-based technique, there are limitations
(see Section 5.3 for a detailed discussion). Our approach
is currently limited to discovering models of functions that
primarily perform data flow, with relatively simple logical
computation. We cannot generate a model for a complex
mathematical function (e.g., sine), since our trace of shared
memory accesses does not expose the complex calculations
within the function. Nevertheless, we believe our approach
can still be usefully applied in a variety of scenarios.
Contributions This paper makes the following contribu-
tions:

• We introduce the problem of computing models for
opaque code, and present a novel search-based synthesis
algorithm to address this problem. To our knowledge,
no other technique can find models for opaque code with
the minimal information that our algorithm requires.
• We describe a prototype synthesizer Mimic for Java-

Script functions based on use of proxy objects, and show
that it can successfully synthesize accurate models for
a variety of array-manipulating routines.

2. OVERVIEW
In this section, we give an overview of our synthesis tech-

nique Mimic, using an example function from the JavaScript
standard library.

Consider JavaScript’s built-in Array.prototype.shift func-
tion. For a non-empty array, shift removes its first element e
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Figure 1: Overview of Mimic phases. The green phases (with solid outlines) are deterministic, while the red
phases (with dashed outlines) incorporate randomness. We call the procedure corresponding to the whole
figure MimicCore.

(at index 0), shifts the remaining values down by one index
(so the value at index 1 is shifted to 0, 2 to 1, etc.), and
finally returns e, e.g.:

var arr = [ ' a ' , ' b ' , ' c ' , ' d ' ];
var x = arr.shift ();
// x is ' a ' , and arr is now [ ' b ' , ' c ' , ' d ']

For an empty array, shift returns the value undefined. Mimic
is able to generate a model for shift, shown in Figure 2,
that captures the above behaviors based solely on collected
execution traces, with no access to a source representation.
Note that the method also works for so-called sparse arrays,
which may have certain elements missing.

In the remainder of this section, we outline the steps taken
by Mimic to generate this model. These steps are illustrated
in Figure 1.

Generating inputs and traces. Our approach begins by
generating a set of execution traces for the function in ques-
tion, based on some initial inputs provided by the user.
An execution trace includes information about the memory
operations performed by the function on any objects reach-
able from its parameters, and also what value was returned.
Mimic uses proxy objects to collect such traces for JavaScript
functions (details in Section 4). For the shift function, given
the input ['a','b','c','d'], we obtain the following trace:

read field ' length ' of arg0 // 4
read field 0 of arg0 // ' a '
read field 1 of arg0 // ' b '
write ' b ' to field 0 of arg0
read field 2 of arg0 // ' c '
write ' c ' to field 1 of arg0
read field 3 of arg0 // ' d '
write ' d ' to field 2 of arg0
delete field 3 of arg0
write 3 to field ' length ' of arg0
return ' a '

The trace contains reads from and writes to the array
parameter arg0, with writes showing what value was written
but not how the value was computed.

Given traces based on the initial inputs, Mimic generates
other potentially interesting inputs whose traces may clarify
the behavior of the function. In the above trace, we see
entry read field 1 of arg0, which reads 'b' from the input
array, and then write 'b' to field 0 of arg0, which writes
'b'. Based solely on these trace entries, one cannot tell if
'b' is being copied from the input array, or whether the
write obtains 'b' from some other computation. Hence,
Mimic generates an input with a different value in arg0[1],
to attempt to distinguish these two cases. Input generation is
based on heuristics, and is discussed more fully in Section 3.2.

Loops. Given a completed set of traces, our technique next
tries to discover possible looping structures in the code. We
first abstract each trace to a trace skeleton, which contains
the operations performed by a trace but elides specific values
and field offsets. A trace skeleton exposes the structure of the
computation in a manner less dependent on the particular
input values of a trace. For the above trace, the skeleton of
the first four entries is read;read;read;write;.

Given a set of trace skeletons, Mimic then proposes loop
structures by searching for repeated patterns in the skeletons,
rating loop structures by how well they match (see Section 3.3
for details). Each loop structure is assigned a probability
proportional to its rating, and then Mimic randomly selects
a structure to use based on these probabilities. The full space
of loop structures supported by Mimic is covered by runs of
the tool with different random seeds.

For shift, the highest-rated loop structure is also the
correct one, and is as follows (shown over the skeleton in a
regular language-like syntax):

read;read;(has;(read;write;| delete ;))* delete;
write;

The trace event has is a check if a given index is part of the
array (which may return false for sparse arrays).

Categorization. After a loop structure is chosen, Mimic
groups the traces into distinct categories based on their
skeletons. For shift, two categories are created, one for
traces matching the loop structure above, and one for the
trace corresponding to the empty array (which does not
match the structure). Mimic synthesizes models for each
category separately, as described next, and then merges them
to discover the final model which works for all inputs.

Search. To begin a random search for a model, we first
generate a program to closely match one of the given input
traces. For the trace above and the given loop structure, we
generate the following initial program:

var n0 = arg0.length
var n1 = arg0 [0]
for (var i = 0; i < 0; i += 1) {

var n2 = 1 in arg0
if (true) {

var n3 = arg0 [1]
arg0 [0] = ' b '

} else {
delete arg0 [2]

}
}
delete arg0 [3]
arg0.length = 3
return ' a '
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s ::= v := e [ e ] | e [ e ] := e | v := e ( e, . . . , e )
| if ( e ) { s } else { s } | v := e
| for ( s ; e ; s ) { s } | s ; s

e ::= . . . | -1 | 0 | 1 | . . . | true | false
| e + e | e - e | e < e | e == e | ! e
| ( v , . . . , v ) => e

Figure 3: Syntax of a small object-oriented lan-
guage.

This program is clearly too specific to the given trace (it
uses specific values from its input array), and its loop and if
conditions are incorrect.1

A random mutation is then applied to this program. For
instance, the second line might be replaced with the state-
ment var n1 = arg0[n0+1]. The mutations allow the program
gradually be transformed towards a solution. To this end,
the mutated program is compared with the current program
in terms of how closely is matches the available traces. If it
“ranks” better—as per a fitness function—the mutated pro-
gram becomes the current candidate. If not (like in this case,
where the mutation is worse), it still becomes the current
candidate with a certain probability. This is a random search
inspired by MCMC (see Section 3.4).

Our random search is able to gradually evolve this program
into the code in lines 4–16 of Figure 2, which works for all non-
empty arrays. Key to the efficacy of the search is a fitness
function for programs that rewards incremental progress
toward a correct solution.

For the category corresponding to empty arrays, the search
discovers the following program:

var n0 = arg0.length
arg0.length = 0

// program implicitly returns undefined

Merging. After generating models for all categories, Mimic
merges the models using conditional statements to create a
single model. At first, the branching conditions are unknown,
so some trivial condition such as true is used. Another phase
of random search discovers the correct conditions to make the
model work for all input traces. Finally, a last cleanup search
makes the program more readable by removing unnecessary
statements and simplifying the program. For shift, this final
search yields the model in Figure 2.

3. APPROACH
In this section we detail the different phases of our approach

to synthesizing models of opaque code, shown in Figure 1.
As input, we require a function and one or more inputs
to that function. Furthermore, we assume that we have a
means of executing the function on an input of our choice and
recording a trace of this execution. We talk more about how
these assumptions are fulfilled for JavaScript in the setting
of Mimic in Section 4.

We explain our approach for a simple, dynamic, object-
oriented language with object allocation, field reads and
writes, functions (“callable” objects), integers, arithmetic
operations, conditionals, and loops. For simplicity, all field

1In our implementation, the initial program is actually
slightly more general and contains an auxiliary result variable
as well as other ways to break out of the loop; see Section 3.

names are integers, and objects can be viewed as arrays,
where the ith array element is stored in field i − 1. The
syntax for statements and expressions is given in Figure 3.

A program trace captures the execution of a function on a
particular input and is a sequence of trace events and can be
field reads, writes and function invocations. Finally, the trace
contains a return value. For all the values in the trace (such
as the field being read, or the receiver), the trace directly
holds that value if it is a primitive (i.e., an integer). If the
value is an object, then the trace holds a unique identifier
for that object. For our simple language, this trace format is
sufficient to capture all object accesses performed by opaque
code to objects passed as parameters. Note that the trace
does not contain information about where values originate.

3.1 Main Loop
Algorithm 1 Main loop for model synthesis

Require: opaque function f , initial inputs I, timeout t
1: procedure FindModel(f, I, t)
2: m← null
3: while m = null do
4: InitRandomSeed()
5: m←MimicCore(f, I) run with timeout t

6: return m

Algorithm 1 gives pseudocode for the main loop of our
technique. In each iteration, a global pseudo-random number
generator is initialized with a fresh random seed, and then
the synthesis procedure MimicCore (shown in Figure 1) is
invoked with some timeout t (null is returned if t is exceeded).
Recall from Figure 1 that the loop detection and search
phases make use of randomness. Hence, by periodically
restarting the search with a fresh random seed, we ensure
that (1) different loop structures are explored and (2) the core
search explores different parts of the state space, breaking out
of local minima. Note that the loop parallelizes trivially, by
simply running multiple iterations concurrently and stopping
when any iteration succeeds. In our implementation, we
used an exponential backoff strategy to vary the timeout (see
Section 5).

3.2 Input Generation
In order to generate an accurate opaque function model in

our approach, we require a set of inputs that covers all of the
possible behaviors the function can exhibit. While generating
such an input set is impossible in general, we have developed
heuristics that have worked well for the opaque functions we
have tested thus far. Given one or more representative inputs
provided by the user, we automatically generate additional
inputs, with three main goals:

1. Determine the flow of values through a method. As
illustrated with the example trace in Section 2, with
only a trace it is impossible to know if a method copies
a value from another location or computes it from
scratch.

2. Find dependencies on values of the inputs. For instance,
the method Array.prototype.indexOf in JavaScript re-
turns the index of a value in an array (or -1 if it doesn’t
exist in the array). By changing the values in the ar-
ray and what value is searched for, we can learn this
dependency on the input values.

3. Expose corner cases. For many functions it is possible
to increase the coverage by trying corner cases such
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as the empty array. For instance, this reveals that
Array.prototype.pop returns undefined for the empty
array.

Algorithm 2 Input generation

Require: initial inputs init
1: procedure InputGen(init)
2: R← init, I ← init, I ′ ← ∅
3: while I 6= ∅ do
4: for i ∈ I do
5: t← GetTrace(i)
6: L← ExtractReadLocs(t)
7: I ′ ← I ′ ∪GenNewVals(i, L)

8: I ← I ′ −R,R← R ∪ I, I ′ ← ∅
9: return R

Algorithm 2 gives pseudocode for input generation. In
each iteration of the while loop, new inputs I ′ are generated
from a set of inputs I as follows. For every input i in I, the
opaque function is first executed on i to record a trace t.
From t, we extract all memory locations L that were read,
where a memory location consists of a base object and field
offset. We generate new inputs by calling GenNewVals,
which heuristically replaces the values of input locations in
L with new values.

To decide what different values to generate for a location,
we use heuristics based on the type of the original value. For
integers, we randomly choose values, and include a few fixed
values that are likely corner cases such as 0, -1, or 1. For
objects, we sometimes replace the object with a clone, to
distinguish cases involving aliased parameters. Furthermore,
we can remove some fields, add additional fields, or provide
an empty object.

At the outermost level, we repeat the steps above until no
new inputs can be generated. In our prototype, we termi-
nated input generation after two iterations of the while loop,
as we found that this generated a sufficient set of inputs.

3.3 Loop Detection
After input generation, our technique next discovers pos-

sible control-flow structure for the function, i.e., loops and
conditionals (the “Loop Detection” and “Categorizer” phases
in Figure 1). By fixing the control flow structure for the
model first, the core random search can concentrate on find-
ing the correct expressions to complete the program. Here
we describe loop detection in more detail; categorizing and
merging were described in Section 2.

Given a set of execution traces like ours, discovering arbi-
trary looping constructs (with nesting, complex conditionals
within loops, etc.) is a highly non-trivial problem. The
problem can be viewed as learning a regular language form
only positive examples, where the examples are the program
traces, and the regular language represents the control flow.
Gold [5] showed that the class of regular languages is not
learnable from only positive examples. However, we have had
success in discovering basic looping structures with a simple,
probabilistic technique based on detecting repeated patterns
that appear in multiple execution traces for a function, as
described below.

We restrict the methods to have a single loop, with po-
tentially one conditional statement in the body. To discover
loop-like patterns of this form in traces, we first abstract

Algorithm 3 Loop detection

Require: set of traces T
1: procedure LoopDetect(T )
2: S ← GetSkeletons(T ), C ← ∅
3: for s ∈ S do
4: C ← C ∪ LoopCandidates(s)

5: for c ∈ C do
6: score[c]← Rank(c, S)

7: L← Sort(C, score)
8: return L[i] with probability αloop · α · (1− α)i−1

the traces to trace skeletons, which only consist of the event
kinds in the trace. Such abstraction is useful since there is
often some variation in the events generated by a statement
in a loop (e.g., the index being accessed by an array read).
Given such a trace skeleton, we enumerate candidate control
flow structures in the skeleton by simply enumerating all
possible loop start points, as well as branch lengths inside
the loop.2 Consider the following trace skeleton:

read; read; write; call; read; write; call;
read; read; write; call; read; write; call;

For this example, the following control flow candidates are
generated, among others (in a regular expression-like syntax):

(read; | write; call)*
(read; (write; call ;|))*
read; (read; (write; call ;|))*

Note that the candidates must match the full trace, otherwise
the candidate could not be the control flow that generated
the given trace. To avoid guessing unlikely loops, one can
restrict the search to loops that have at least some number
of iterations, say 3.

We repeat the procedure above across skeletons of all traces
to create a complete set of loop candidates. Depending on
the length and the number of traces, this set can be quite
large. Our next step is to rank the loop candidates based
on their likelihood. First, we can check how many traces
can be explained by a given loop structure by matching
it against all trace skeletons. Intuitively, the more traces
that can be explained by a possible loop, the more likely
that loop is correct. Secondly, if several loops match the
same number of traces, then we further rank them by the
number of statements in the control flow candidate, with
fewer statements ranking higher.

Once the loops are sorted according to their rank, we choose
one loop at random with which to continue the search, where
the ith loop is picked with probability αloop · α · (1− α)i−1

for some parameters α,αloop ∈ (0, 1). αloop controls the
probability that no loop candidate is chosen. In our setting,
we found α = 0.7 and αloop = 0.9 to work well.

3.4 Random Search
We now describe the random search procedure at the heart

of our technique (the “Search” boxes in Figure 1). We view
the problem of finding a suitable code model for a set of
inputs as an optimization problem, for a fitness function that

2This algorithm runs in polynomial time, but could get slow
for very long traces, in which case optimizations might be
necessary. In the cases we have looked at, this has not been
a problem.
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Algorithm 4 Random search for a model

Require: set of inputs I, loop structure l
1: procedure Search(I, l)
2: To ← {i 7→ GetTrace(i)} for i ∈ I
3: m← InitialModel(To[i], l) for some i ∈ I
4: c← Fitness(m,To)
5: while c > 0 do
6: m′ ←Mutate(m)
7: c′ ← Fitness(m′, To)
8: if c′ < c then
9: m← m′

10: else
11: m← m′ with probability
12: min (1, exp (−β · (c′ − c)− γ))

13: return m
14: procedure Fitness(m,To)
15: s← 0
16: for (i, t) ∈ To do
17: t′ ← GetModelTrace(m, i)
18: s← s+ Compare(t, t′)

19: return s

evaluates a model by comparing its execution traces to those
of the underlying opaque function. Finding a model then
corresponds to finding a minimum for the fitness function
in the highly irregular and high-dimensional space of all
models. To find a model, we employ a technique inspired
by Markov Chain Monte Carlo (MCMC) sampling and the
Metropolis–Hastings algorithm [1], which has been recently
used successfully in the domain of superoptimization [16].
The advantage of this technique is that the sampling fre-
quency is proportional to the value of the “density” function
at that point, so the search is carried out more productively.

Algorithm 4 gives pseudocode for our random search. We
maintain a current candidate model m, and each iteration
creates a mutated model m′. m′ is then evaluated using
the fitness function, and replaces the current model if it
has a lower cost. Otherwise, the new model might still
be accepted, with a probability that is proportional to the
difference between the two costs. This allows the search to
recover from local minima and makes it robust against the
irregular nature of the search space. More precisely, if the
new model has a higher cost c′ compared to the current cost
c, then the it is accepted with probability

min
(
1, exp

(
−β · (c′ − c)− γ

))
where β and γ are parameters that controls how often models
that don’t improve the score are accepted.3 Empirically, we
found a value of 8 for both β and γ to work well in our
setting.

3.4.1 Initial Program
We generate an initial program by exactly matching one

execution trace t, respecting the given loop structure (if any).
So, the initial program uses the exact concrete values from t
in its statements as needed. If there is ambiguity because of
aliasing (e.g., the same object is passed as two parameters),
we can pick any of the choices. For statements inside a loop,

3In an approach more closely resembeling MCMC, γ would
be zero. However, we found a non-zero value for γ to reduce
convergence times.

where values might change with every iteration, we simply
use values from the first iteration. It is then the job of the
random search to generalize this very specific initial program
to other inputs, and generalize statements inside loops to
work for all iterations.

More precisely, a trace event read field f of o in t is trans-
lated to the statement n := o[f]; for a fresh local variable
n. The trace event write v to field f of o is translated to
o[f] := v; and a call call f with a0 .. an yields the state-
ment f(a0, ..., an);. If there is a loop, then a loop header
for (i = 0; i < 0; i++) is generated, for a fresh local vari-
able i. Initially, the loop body is never executed, and it
is up to the random search to find the correct termination
statement. To allow breaking out of the loop early, we add
an additional statement to the end of the loop body of the
form if (false) break;.4

Finally, we introduce a local variable result for the result
of the function, which gets returned at the end. To allow
incrementally building the result, we additionally add the
statement if (true) result = result; inside the loop body
as well as the if statement containing the break. Initially,
these are nops, but allow the search to accumulate the result
if necessary.

3.4.2 Fitness Function
Our fitness function Fitness in Algorithm 4 computes

the fitness of a candidate model by comparing its execution
traces on the inputs against To, the traces from the opaque
function. To do so, it uses a function Compare that takes as
input a trace t from the opaque function called the reference
trace, and t′ from the current model called the candidate
trace, both generated from the same input. It then computes
a score that measures how close the t′ is to t. A score of zero
indicates t = t′, while any larger value indicates a difference
in the traces.

For our approach to work effectively, it is crucial that the
random search can make incremental progress toward a good
model. This incremental progress is enabled by the fitness
function reflecting partial correctness of a model in the score.
To this end, Compare gives fine-grained partial credit, even
for partially-correct individual events. For instance, if the
reference trace contains the event read field 1 of #1, and
the candidate trace contains read field 2 of #1, then the
score is lower (better) than in the case where no read event
was present at all, or where the read event also read from
the wrong object.

Formally, Compare(t, t′) is defined as:

1

2

 ∑
Event
kind k

∑
i<|evs(t,k)|
i<|evs(t′,k)|

dist(evs(t, k)[i] , evs(t′, k)[i])

 (1)

+

 ∑
Event
kind k

∣∣|evs(t, k)| −
∣∣evs(t′, k)

∣∣∣∣
 (2)

+ 1
{

return-value(t) 6= return-value(t′)
}

(3)

We use evs(t, k) to refer to all events in a trace t of kind k
(e.g., all field reads) as a list, which can be indexed using

4Alternatively, we could allow more complicated termination
expression in the loop header.
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the notation `[i], and |·| returns the length of a list (or the
absolute value, depending on context). return-value(·) refers
to the return value of a trace, and dist(·, ·) measures the
similarity of two trace events (of the same kind). It is defined
as follows:

dist(e1, e2) =
1

|vals(e1)|
∑

i<|vals(e1)|

1{vals(e1)[i] 6= vals(e2)[i]}

where vals(·) is a list of values for a given trace event. For
a field read, this is the receiver and field name; for a field
write it additionally includes the value written; and, for a
function call it includes the function invoked as well as all
arguments. Note that dist(·, ·) is scaled to return a value
between 0 and 1.

In the formula for Compare, (1) calculates the difference
for all the events that are present in both traces, while (2)
penalizes the model for any event that is missing or added
(compared to the reference trace). Because (1) is scaled by
1
2
, the search gets partial credit for just having the right

number of events of a given kind in a trace, even if the
wrong fields are read/written. This is useful to determine
the correct loop termination conditions without necessarily
having a correct loop body already. Finally, (3) ensures that
the result is correct. Section 5 will show the advantage of
this fine-grained fitness function over a more straightforward
approach.

3.4.3 Random Program Mutation
The control flow structure is fixed at this point, and the

random search can concentrate on finding the correct sub-
expressions for all the statements. To this end, a statement
is selected at random, and modified randomly. For field
reads, writes and function calls, a sub-expression is selected
at random and replaced with a random new expression (we
will explain shortly what kinds of expressions are generated).
Similarly, for local variable assignments, the right-hand side
is randomly replaced. For a for loop, the upper bound is
replaced with a new random expression. For an if statement,
the condition is replaced randomly. break statements are not
modified.

Generating random expression follows the grammar of the
programming language in Figure 3. To avoid creating very
large nested expressions, the probability of producing an
expression of depth d decreases exponentially with d. The
set of local variables than can be generated is determined
by the set of variables that is defined at the given program
point. The set of constants is taken from all constants that
appear in any of the traces, as well as a few heuristically
useful constants (such as 0).

3.5 Cleanup
When the random search succeeds, the resulting program

typically contains redundant parts. For instance, if it is not
necessary to break out of a loop early, then the statement
if (false) break; can be removed. Similarly, there might
be unused local variables, or expressions that are more com-
plicated then necessary (e.g., 1+1). To clean up the resulting
model, another random search is performed, with a slightly
modified fitness function as well as different random muta-
tions: In addition to the existing program transformations,
statements can now also be removed. Furthermore, we add
the number of AST nodes of the program to the cost. This
allows the search to improve the program by removing un-

used statements and simplifying expressions like 1+1 to 2.
Furthermore, the cost will never reach zero, and thus the
search is stopped after a certain number of iterations have
been carried out. Cleanup is not strictly necessary, as the
models perform the same observable behavior, whether they
are cleaned up or not. However, cleanup can make programs
nicer to look at by humans.

4. IMPLEMENTATION
We have implemented the ideas presented in Section 3 in a

prototype implementation called Mimic for JavaScript. The
tool is open source and available online.5 In this section we
highlight challenges and solutions particular to our setting,
and discuss some implementation choices.

Trace Recording using Proxies. We leverage the ECMA-
Script 6 proxy feature [13], which allows for objects with
programmer-defined behavior on interactions with that object
(such as field reads and writes, enumeration, etc.). An object
o can be virtualized with a handler h as follows:

var p = new Proxy(o, h);

Any interaction with p will ask the handler how to handle
that interaction (and default to accessing o directly if the
handler does not specify any action). We leverage this feature
to record the traces required for our technique, by proxying
all non-primitive arguments to the opaque function. This
way, we can intercept any interaction the opaque function
has with the arguments and record it as an event in the
trace. Our handler responds to all interactions just like the
underlying object would (by forwarding all calls), with the
additional book-keeping to record the trace.

Newly Allocated Objects. One challenge with this
approach is that newly allocated objects will only be visible
to the recording infrastructure when they are returned (or
otherwise used, e.g., written to a field). For instance, the
function Array.prototype.map takes an array and a function,
and applies the function to all arguments, returning a new
array with all the results. When we record the trace, we
see all the accesses to the array elements and the function
invocations, but the field writes to the newly allocated array
are not visible.

To handle such functions, we generate the relevant object
allocation at the beginning of the initial model and assign
it to the result variable. We also add a number of guarded
field writes to the newly allocated object at different loca-
tions in the model (e.g., before the loop or inside the loop
body): if (false) result[0] = 0;. The random search is
then able to identify which particular assignments are cor-
rect (by changing the guard) and find the correct field name
and value to be written.

Non-Terminating Models. It is easy for the random mu-
tations to generate programs that are non-terminating, or
take very long to terminate. This can cause an infinite loop
when recording the traces as part of evaluating the fitness
function. Luckily, given the reference trace, we know how
long the trace from the model should be, and we can abort
the execution of a model when the trace gets significantly
longer than the reference trace. In that case, the fitness

5https://github.com/Samsung/mimic
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function assigns a very large cost to the trace (note that
small increases in trace length are not excessively penalized).

JavaScript-Specific Features. JavaScript contains various
features not in our language from Section 3. Many of these
are straightforward to support, e.g., deletion of fields, func-
tion receivers, and exceptions. JavaScript allows variadic
functions by providing the special variable arguments that can
be used to access any argument using argument[i], as well
as the number of arguments passed with arguments.length.
For instance, the function Array.prototype.push adds zero
or more elements to an array. Mimic supports such func-
tions, by generating inputs of different lengths and generating
expressions of the form arguments[i] and arguments.length

during the random search. Essentially, we can view the func-
tion as just having a single argument that is an array, and
then use the usual input generation strategy described earlier.
The only difference is that we do not get any information
in the trace about accesses to arguments (this special object
cannot be proxied).

Optimizations. It is important for the random search to be
able to evaluate many random proposals, which is why we
implemented the following optimizations to our approach.

Input Selection. Input generation can create thousands
of inputs (or more), and executing all of them during search
would be prohibitively slow. For this reason, we restrict the
inputs used during search to a much smaller number. We
found 20 inputs to work well in our experiments, if the inputs
are diverse enough. To get diverse inputs, we choose input
that generate traces of different lengths, as well as inputs
that have different scores on the initial program. If the search
succeeds, all inputs are used to validate the result. If in this
final validation, the score for some input is non-zero, then
the search is considered to have failed, and a new run (with a
different) random seed as described earlier is necessary. We
found this to not be an issue.

Program Mutations. If the program mutations are
generated näıvely, it is easy to generate nonsensical programs.
For instance, by just following the programming language
grammar, one might generate an expression that tries to
read a field of an integer, or use an array object as a field
offset. To avoid exploring such malformed programs, we filter
out expressions when we can statically decide that they are
invalid. Given the dynamic nature of JavaScript, this is not
always possible, but we found that our filtering eliminates
many common malformed expressions.

Parallelization Strategy. Our procedure FindModel
is embarrassingly parallel. However, one can further improve
performance by exploiting the fact that some of the successful
runs finish much more quickly than others. It is often better
to kill a search early and retry again, in the hope of finding
one of those very quick runs. To do this, we start with a
small initial timeout t0, and then exponentially increase it
by a factor f . We found that running 28 threads in parallel
with a timeout of t0 = 3 seconds to work well, with a factor
of f = 2.6 All threads run with the same timeout, and if any
of them succeed, all others can be aborted and the model can
be returned. If none succeed, then the timeout is increased

6If run with fewer threads, Mimic will automatically use a
smaller factor, so that roughly the same number of short
runs are made.

by a factor of f , and the process starts again.
Cleanup As noted earlier, cleanup is not necessary, strictly

speaking, as models exhibit the same observable behavior
with or without cleanup. For this reason, our prototype
implements a quick cleanup that only removes unnecessary
statements and is always applied. Then, a full cleanup as a
random search can be applied optionally, to make the models
more readable.

5. EVALUATION
Here, we present an experimental evaluation of Mimic

on a suite of JavaScript array-manipulating routines. We
evaluated Mimic according to the following five research
questions:

(RQ1) Success Rate: How often was Mimic successful in
generating an accurate model for the tested routines?

(RQ2) Performance: When it succeeded, how long did
Mimic take to generate a model?

(RQ3) Usefulness: Were the models generated by Mimic
useful for a program analysis client?

(RQ4) Obfuscation: Is Mimic robust to obfuscation?
(RQ5) Fitness Function: How important was the fine-

grained partial credit given by our fitness function
(Section 3.4.2)?

5.1 Experimental Setup
Our primary subject programs were the built-in meth-

ods for arrays on Array.prototype provided by any standard
JavaScript runtime [12]. These methods exhibit a variety
of behaviors, including mutation of arrays, loops that iter-
ate forward and backward through the array, and methods
returning non-trivial computed results (e.g., reduce). Fur-
thermore, many of these methods can operate on JavaScript’s
sparse arrays (in which certain array indices may be missing),
necessitating additional conditional logic.

We ran our experiments on a Intel Xeon E5-2697 ma-
chine with 28 physical cores, running at 2.6 GHz and using
node v0.12.0 to execute Mimic (written in TypeScript and
Python). Our implementation parallelizes the search for a
model using different random seeds.

5.2 Results
Success Rate Mimic was able to generate models for

some of the Array.prototype functions, but not others. The
functions for which it succeeded are listed in Table 1; we
discuss the other functions below. The models we synthesized
can be found at https://github.com/Samsung/mimic/blob/
master/models/array.js.7 We also included three other
functions over arrays (max, min, and sum) that performed a
bit more computation than the built-in functions.8

Performance Experimental data addressing (RQ2) ap-
pears in Table 1. The performance of Mimic was quite
reasonable, with models taking an overall average of 60.6
seconds to generate using our exponential increasing timeout
strategy, and less than 5 minutes on average for all models.
This experiment was repeated 100 times per example, with-
out using the full cleanup (see Section 4). The additional
time it would require to perform a full cleanup is 3.74 seconds

7Some array methods can handle “Array-like” objects; we
have not used such inputs and focused only on actual arrays.
8Though code is available for these functions, Mimic made
no use of it, observing their behavior as if they were opaque.
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Table 1: Summary of all Array.prototype functions
that Mimic can handle, as well as some handwrit-
ten functions to compute the sum, maximum and
minimum of an array of numbers. We report the av-
erage time (over 100 runs) it takes to synthesize the
model (using the quick cleanup) on our hardware
as well as how high the correct loop was ranked (1
being the highest rank).

Function Time to synthesize Loop
(in seconds) rank

every 67.86 ± 22.41 1
filter 43.05 ± 16.13 1
forEach 4.59 ± 1.52 1
indexOf 42.94 ± 38.59 1
lastIndexOf 36.92 ± 19.22 2
map 15.64 ± 6.86 1
pop 2.35 ± 0.74 loop-free
push 291.94 ± 310.17 3
reduce 25.33 ± 12.51 1
reduceRight 126.41 ± 53.77 1
shift 117.54 ± 52.11 1
some 6.74 ± 3.16 1
max 56.61 ± 107.86 2
min 50.69 ± 121.95 2
sum 20.35 ± 39.83 2

on average, and less than 8 seconds for all examples (for the
default of 1000 cleanup iterations).

In the same table we also show the loop rank assigned by
our ranking heuristic (1 being the highest ranked proposal).
The loop ranking chooses the correct control structure for 9
out of 15 examples with rank 1, and with our choices for α
and αloop, MimicCore then picks this loop with probability
64%. For the five examples where the correct loop is ranked
second, the probability is 18.9%, and for push with rank 3
it is 5.7%. Finally, pop does not have a loop (and the loop
inference does not propose any loops).

Longer search times were due to several reasons: (1) loop
ranking, (2) complicated expressions (e.g., generating the
index n0-i-1 is lower probability than, say, i), and complex
dependencies between loop iterations (reduce requires the
result of the one iteration to be passed in the next iteration).

Mimic currently cannot synthesize models for Array.prototype
methods not listed in Table 1, due to the following issues:

• Multiple loops: concat, sort, splice and unshift all
require multiple loops, for which we currently do not
have any heuristics.
• Complex conditionals within loops: reverse re-

verses a list in place. The loop body takes two indices
from the front and back and exchanges them. To handle
sparse arrays, four different cases need to be handled
(depending on whether either element is present or not).
• Lack of relevant mutations: join, toString and

toLocalString require computing a (possibly localized)
string representation of an arbitrary array element,
which our mutations do not propose at the moment.
• Proxy-related bugs: We discovered some bugs in

the current proxy implementation in node.js. Unfor-
tunately, it crashes for slice. It also reports traces
that are not in accordance with the specification for

concat, shift and reverse. For shift we used our own
implementation that follows the specification.

Usefulness To answer (RQ3), we compared the models
generated by Mimic with those present in the T.J. Watson
Libraries for Analysis (WALA) [20], a production-quality
static analysis framework for Java and JavaScript. We found
that WALA did not yet have any model for functions reduce,
every, and some. Since these functions perform callbacks
of user-provided functions, a lack of a model could lead to
incorrect call graphs for programs invoking the functions.
We added the Mimic-generated models for these functions to
WALA, and confirmed via small examples that their presence
improved call graph completeness. Additionally, we found
WALA’s existing model of the frequently-used pop function
was written incorrectly, such that it would always return
undefined rather than the popped value. Many of WALA’s
models also do not handle sparse arrays, which Mimic models
do handle. These examples illustrate how writing models by
hand can be tedious and error-prone, and how tool support
can ease the process. Mimic-generated models for the above
functions were accepted for inclusion in WALA.9

Obfuscation To answer (RQ4), we ran Mimic-generated
models through a well-known JavaScript obfuscator,10 and
tested that Mimic generated the same model for the ob-
fuscated function. The obfuscator employed rewrites static
property accesses into dynamic ones (see Section 1), which
could significantly degrade the quality of many static anal-
yses. We confirmed that for all functions, we obtained the
same model when using the obfuscated code as the baseline,
showing the promise of our technique for making such code
more analyzeable.

Fitness Function To answer (RQ5), we ran Mimic with
a more näıve fitness function that only gave credit to a
trace when an individual event matched exactly with the
reference trace, rather than giving partial credit for partial
event matches (see Section 3.4.2). In an experiment, we
found that our fitness function led to decreased running
times compared to the näıve function, validating our use
of fine-grained partial credit. Specifically, the running time
average increased by 39.7% on average for the näıve fitness
function, and as much as 170% for some examples.

5.3 Limitations and Threats to Validity
Mimic currently cannot handle opaque functions with any

of the following properties:

• Complex local computations, e.g., a sine function, as
our trace does not expose such computations.
• Nested loops or complex conditionals inside loops, as

discussed above. Adding such support without exces-
sively increasing the number of loop candidates is future
work.
• Reliance on non-parameter inputs, e.g., a variable in

the closure state initialized via some other sequence of
method calls. This could perhaps be handled by the
user providing a richer test harness for the function.
• Global side effects, e.g., on the network or file system.

This is a limitation of the native execution approach.
• Long running time, which will slow down our search,

again due to native execution.

9https://github.com/wala/WALA/pull/64
10http://www.javascriptobfuscator.com/
Javascript-Obfuscator.aspx
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The primary threat to validity of our evaluation is our
choice of benchmarks. We tested Mimic on all Array.prototype
methods, and discussed cases it could and could not handle.
But, Mimic’s handling of different array routines, or routines
on other data structures, could vary. Our results thus far are
quite encouraging, and we plan to further validate Mimic
for other types of functions in future work.

6. RELATED WORK
Summary Computation Computing summaries of proce-
dure calls has been a very active area of in program analysis,
and it is impossible to mention all the related work on the
topic; Sharir and Pneuli’s seminal work [17] is a good overview
of the foundational approaches to this problem. We have
used the term “models” in this paper; summaries can be
thought of as models that suffice for specific static analyses,
which use abstractions.

Most of the work on summary computation assumes the
availability of library code for analysis. However, recently,
several authors have tried to deal with unavailable libraries.
The work by Zhu et al. [21] deals with the problem of missing
library code by inferring the minimal number of “must not
flow” specifications that would prevent undesirable flows in
the client application. Bastani et al. [2] have also presented an
approach that infers potential summaries for an unavailable
library, based on a particular static analysis problem being
solved. In both the above approaches, ultimately a human
auditor must judge the validity of the findings of the tool.
Like these works, we also do not require the code to be
available in analyzable form, but (unlike these works) we
do assume the library code is available to execute. On the
other hand, while the summaries computed in the above
mostly capture tainted-ness and aliasing, the models that we
compute are considerably richer.

Madsen et al. [11] construct models of library functions
through static analysis of uses of values returned from native
JavaScript functions. However, their work does not infer flow
of values through the library functions as would be needed,
for instance, for alias analysis; rather, it only infers the type
structure of values returned from the libraries.

Summaries can be helpful in dynamic analysis settings
as well. Palepu et al. [14] compute summaries of library
functions with the intention of avoiding repeated execution
of instrumented library code. Their summary representation
is suitable for aliasing and taint-flow like properties. By
contrast, our technique requires only partial observation of
the execution of the library code, and our models are richer,
but they are more expensive to compute.
Trace-based Synthesis As mentioned in Section 1, there
has been considerable work related to the problem of con-
structing programs to fit traces. One of the earlier papers
in this area is that of Biermann et al. [3]. Given a trace of
all instructions, as well as conditionals, they show how to
construct a (looping) program that would explain the trace.
They present a backtracking procedure that tries to discover
the right program structure. However, the technique requires
all instructions, including conditionals, in the trace. By con-
trast, our technique requires observing only the shared reads
and writes.

Traces can be detailed traces of low-level instructions, or
they can be traces of high level domain-specific instructions,
e.g. deleting a character in an editing buffer. Automatic con-
struction of “programs” to automate end-user tasks has been

an area of much work in the last decade [10, 6]. Repetitive
user actions correspond to example traces, and a tool syn-
thesizes a program representation that automates such user
actions. However, most current approaches to synthesis from
examples are limited to generating programs in carefully-
designed domain-specific languages, leveraging clever algo-
rithms and data structures for efficiency (cf. version algebra
discussion in Section 1). Extending such approaches to gen-
erating programs with richer data and control structures,
as needed in our scenario, is non-trivial. When it comes to
general purpose programs, Lau et al.’s work [10] mentions the
increased difficulty in synthesis when traces do not capture
all the steps of a program’s execution; in fact, they report
experiments only on complete traces, as in Biermann’s work.
Other Synthesis Approaches Jha et al. [8] presented a
technique to synthesize straight-line programs from exam-
ples. Their technique searches through a space of combina-
tions of program operations which could be either primitive
statements, or API calls. Like our work, they check the
correctness of their synthesized programs against a native
implementation on a set of inputs. Later, Qi et al. [15] ex-
tended the technique to handle loops and data structures
by extending the set of possible primitive statements. As
discussed in Section 1, the main limitation of this approach
is in scalability of the constraint solver as the number of
primitive statement types increases; our generate-and-test
approach leverages native execution and parallelization to
improve scalability.

Sketching [18] is another synthesis system based on con-
straint solving. The idea of sketching is to synthesize missing
expressions (a.k.a. “holes”) from an otherwise complete pro-
gram. For certain domains, boolean satisfiability (SAT)
techniques can be used to efficiently synthesize completions
of programs with holes. Kuncak et al. [9] have presented
automated synthesis procedures that work (based on formula
solving) for a limited setting of linear arithmetic and data
structures. In our setting, the entire program needs to be
synthesized, and hence the above constraint-based techniques
do not apply directly.
Other Uses of Search Our work is inspired by recent suc-
cesses of search-based techniques in the research community.
To pick two examples, there is the automatic patch genera-
tion work by Weimer at al. [4], which uses genetic algorithms
for search (and which we discussed in Section 1), and com-
piler optimization work by Schkufza et al. [16], which also
uses the Markov-Chain Monte Carlo technique.

7. CONCLUSIONS
We have presented a novel technique for synthesizing mod-

els for opaque code. We collect partial execution traces by
intercepting memory accesses to shared state, and then use
a random search technique to construct an executable code
model that matches the traces. We implemented our tech-
nique in a tool Mimic for JavaScript, and showed that it
could synthesize non-trivial models for a variety of array-
manipulating routines.

Along with the paper we have submitted a replication
package containing the full source code of our implementation
as well as all the experimental setup to reproduce the results
in this paper. It has been successfully evaluated by the
Replication Packages Evaluation Committee and found to
meet expectations.
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