
Abstract Read Permissions:
Fractional Permissions without the Fractions

Stefan Heule1, K. Rustan M. Leino2, Peter Müller1, and
Alexander J. Summers1

1 ETH Zurich, Switzerland
stheule@ethz.ch, peter.mueller@inf.ethz.ch,

alexander.summers@inf.ethz.ch
2 Microsoft Research, USA
leino@microsoft.com

Abstract. Fractional Permissions are a popular approach to reasoning
about programs that use shared-memory concurrency, because they pro-
vide a way of proving data race freedom while permitting concurrent
read access. However, specification using fractional permissions typically
requires the user to pick concrete mathematical values for partial permis-
sions, making specifications overly low-level, tedious to write, and harder
to adapt and re-use. This paper introduces abstract read permissions: a
flexible and expressive specification methodology that supports fractional
permissions while allowing the user to work at the abstract level of read
and write permissions. The methodology is flexible, modular, and sound.
It has been implemented in the verification tool Chalice.

1 Introduction

An important part of reasoning about concurrent programs concerns their pat-
terns of access to memory and other shared resources. A useful aid in the spec-
ification of such patterns is to use a model of resource permissions that can
be transferred between program entities to specify how individual threads are
currently allowed to access shared resources. By allowing permissions to be frac-
tional [4], it is possible to distinguish between acceptable read and write accesses,
which is necessary for expressive reasoning about programs with shared-memory
concurrency. Permissions are a fictional notion used for static reasoning about
a program; they are used in specifications and during program verification, but
are not present at program execution.

The traditional model of fractional permissions associates an access permis-
sion with every memory location. The permission can be divided into fractions,
which can be held by and transferred between threads and method activation
records. An activation record may read a memory location only if it holds a
non-zero fraction of the memory location’s permission. To write to the memory
location, the activation record must hold the entire permission. Since fractional
permissions can only be divided and combined, but never forged or duplicated,



this discipline ensures race freedom for memory updates, while allowing con-
current reads. In the verification of both sequential and concurrent programs,
permissions also enable framing; as long as the caller of a method holds on to
a non-zero fraction of the permission for a memory location, it may soundly
assume that the call will not affect the value stored in the location, because the
callee method cannot obtain the full (write) permission to modify it.

While fractional permissions give rise to a flexible model for reasoning, writ-
ing specifications in this model can be tedious and overly low-level due to the
need to work with some concrete mathematical representation of the permis-
sions. The problem is exacerbated by the fact that programmers are concerned
with permissions only in the abstract sense of reading or writing to locations;
the concrete values representing these permissions are largely irrelevant.

In this paper, we present abstract read permissions; a novel specification
methodology that allows the programmer to reason at the level of read and write
permissions. Our methodology is expressive, modular, and sound. We present it
in the context of implicit dynamic frames [20], but it also applies to other permis-
sion logics; in particular, separation logic [19]. This paper builds on our previous
workshop presentation [8]. Our methodology is implemented in two verifiers for
the class-based, concurrent language Chalice [13]; one based on verification con-
dition generation [12] and one on symbolic execution [11].

Outline. The next section motivates abstract read permissions through an ex-
ample. Sec. 3 summarizes the background concerning permission-based verifica-
tion that is used in the rest of the paper. We present the core ideas of abstract
read permissions in Sec. 4, and the syntax of permission expressions in Sec. 5.
Sec. 6 explains the encoding of permissions in the program verifier, and Sec. 7
provides an informal soundness argument. Sec. 8 discusses issues and solution
approaches for the use of abstract read permissions in monitor invariants. We
discuss related work in Sec. 9 and conclude in Sec. 10.

2 Motivation

To understand the problem of writing specifications with fractional permissions,
consider a class Expr for arithmetic expressions with a method eval(s : State),
which evaluates an expression in the state s. The method reads the state’s map-
ping of variables to values, denoted by s.map. The precondition of eval requires
read permission to s.map, written acc(s.map, π) for some non-zero fraction π.
Here and throughout, we use a Chalice-like syntax, but there are other nota-
tions in use; for example, in separation logic [17, 3, 18] this condition is written
as s.map π7→ _. The postcondition of the method ensures that this permission is
transferred back to the caller, allowing it to re-assemble a full permission and to
update the state. The resulting specification is displayed in Listing 1. The prob-
lem that we address is how to specify the permission amount π. To illustrate the
challenge, we present three existing options and discuss their shortcomings.

2



method eval(s : State)
requires acc(s.map, π) && s.map 6= null
ensures acc(s.map, π)

Listing 1. Specification of method eval. The method also requires read permission to
the fields of its receiver, but we ignore this aspect here for brevity.

class Add extends Expr {
var left, right : Expr

method eval(s : State) {
leftVal := call left.eval(s)
rightVal := call right.eval(s)
return leftVal + rightVal

}
}

Listing 2. An implementation of method Add.eval. The specification of eval is pre-
sented in Listing 1.

Concrete Fractions. One option is to represent π as a concrete fraction, such
as .18. This approach has four major shortcomings:

(1) Re-usability: Using a concrete fraction forbids calls from a context in
which the caller has a smaller fractional permission to s.map, say .17. If the
specifications cannot be changed to use different fractions (for instance, when
eval and its caller are library methods), the call is not permitted even though
the caller holds a read permission, and eval needs read permission.

(2) Abstraction: For many implementations, the permission amount is ir-
relevant so long as it provides read access. Nevertheless, this approach forces
programmers to choose a specific value and, thus, to clutter up the specification.

(3) Framing: Consider a subclass Add of Expr that represents the addition
of two sub-expressions. Its implementation of eval recursively evaluates the left
and right operands, and returns the sum of the results, as shown in Listing 2.

The recursive call left.eval(s) consumes the entire permission amount that
the caller has (here, .18) before returning the permission to the caller. There-
fore, modular verification of Add.eval must make the worst-case assumption that
the callee (which is dynamically bound to a statically-unknown implementation)
might obtain full permission to s.map and modify the field. Thus, the first recur-
sive call removes any information that the caller has about the value of s.map
before the call: in particular, that the field has a non-null value. Verification of
the second recursive call then fails, since the second conjunct of the precondi-
tion (i.e., s.map 6= null) cannot be proved. Failing to frame this information even
though the calls require only read permission weakens verification considerably.

(4) Permission splitting: Since the recursive calls to eval only read s.map,
it seems reasonable that they could be called in parallel, as shown in Listing 3.

3



leftTk := fork left.eval(s)
rightTk := fork right.eval(s)
return (join leftTk) + (join rightTk)

Listing 3. A parallel implementation of method Add.eval. In Chalice, the fork state-
ment launches an asynchronous method call, which entails checking the method’s pre-
condition and transferring the specified permissions to the new thread. The local vari-
ables leftTk and rightTk store thread identifiers (tokens) that are used in the join
statements to join the threads and to obtain the results of the forked method calls, as
well as the permissions they return.

However, there is no concrete fraction that one could choose for π that lets
one verify this implementation. The entire permission of the forking thread is
transferred to a new thread during the first fork, meaning that no permission is
left to satisfy the precondition of the second fork.

Counting Permissions. A second option is to use counting permissions [3],
which allow one to split a write permission into any positive number of indivis-
ible units. Such a unit then grants read access. So we could represent π in the
specification of eval as a number of such units; say one unit.

Counting permissions address the first two shortcomings of concrete frac-
tions, but not shortcomings (3) and (4): as with concrete fractions, the recursive
call left.eval in Listing 2 consumes all of the permission to s.map that the caller
has and, thus, doesn’t permit the framing of any information about its value;
the second call then does not verify for the same reason as before. Moreover, a
specification using a fixed number of units does not permit the parallel imple-
mentation in Listing 3 since, again, the first fork consumes the entire permission
of the forking thread such that no permission remains to satisfy the precondi-
tion of the second fork. The number of units used in a method pre-condition also
imposes a static bound on the amount of parallelization possible in a method
implementation, breaking abstraction and impairing re-use.

Ghost Parameters. A third option is to let the calling context decide which
permission amount to transfer to a method call; that is, what π should be for a
particular call. This can be achieved by making π a parameter of the method.
The parameter can be considered a ghost parameter, since it is needed only for
the proof and can be omitted in the executing program. In separation logic, such
a parameter π is typically represented as a logical variable that is bound for each
invocation of the method. Both approaches are very similar: ghost parameters
require programmers to provide a value for the ghost parameter when imple-
menting a call, whereas logical variables require the verifier to provide a value
when reasoning about a call. The specification for method eval using a ghost
parameter is shown in Listing 4.

When this option is applied to all methods that require read permission, it
addresses many of the shortcomings described above. It solves the problems of

4



method eval(s : State, ghost π : rational)
requires 0 < π && π ≤ 1 && acc(s.map, π)
ensures acc(s.map, π)

Listing 4. Specification of method eval using a ghost parameter π.

re-use, framing, and permission splitting by allowing a caller to choose a value
for the ghost parameter that ensures that it has enough permission to make
the desired calls (even in parallel), and that some permission remains, to enable
framing. The abstraction problem is reduced, but specifications are still cluttered
up with ghost parameters (or logical variables) and constraints over them.

The abstract read permissions presented in this paper provide most of the
flexibility and expressiveness of the ghost-parameter option above, but without
requiring the user to manually specify the π values or constraints over them. In
particular, our specification methodology does not require a concrete mathemat-
ical representation of permission amounts; especially no concrete fractions.

3 Background

Abstract read permissions are independent of any particular permission logic or
verification technique. For concreteness, we present them for the Chalice lan-
guage and verifier [12], which is based on the verification condition generator
Boogie [1]. This section introduces the background on Chalice that is needed in
the remainder of the paper.

Permissions. Chalice associates permissions with memory locations, as de-
scribed in the introduction, and the permissions held by a method activation
can be fractional [4]. The Chalice language builds in specification constructs,
such as the pre- and postconditions shown in the example above. The specifi-
cations are written in the style of implicit dynamic frames [20], which means
they include accessibility predicates. Accessibility predicates instigate the trans-
fer of permissions at the point where the specification takes effect. For example,
a method precondition acc(this.f, π) says that, at the time of a call to the
method, a (strictly positive) fraction π of the permission to this.f is transferred
from caller to callee, and the caller satisfies the precondition only if it possesses
at least this amount of permission to this.f at the time of the call.

To keep track of permissions, the formalization of Chalice [12] associates with
each method activation a permission mask, that is, a map Mask from locations to
the method activation’s permission to that location. We assume here that per-
mission amounts are represented by rational numbers, but other structures are
also possible. Initially, the permission mask is empty: that is, 0 for all locations.

The semantics of read and write statements in Chalice include proof obliga-
tions that the current method’s mask contains the necessary permissions. So for
a read access to e.f, the verifier checks Mask[[[e]],f] > 0, and for a write access

5



it checks Mask[[[e]],f] = 1, where [[e]] represents the translation of a Chalice
expression into an appropriate Boogie expression.

Permission Transfer. The treatment of specifications is formalized using two
operations: inhale and exhale. Analogously to sequential verification, in which
a method precondition is checked at a call site and assumed inside the method
body, Chalice says that the caller exhales the precondition and the callee inhales
it, and vice versa for the postcondition.

The inhale and exhale operations are defined recursively over the syntax of
specifications. Each sub-expression is encoded as a sequence of Boogie state-
ments, which are composed sequentially. Conditions in a specification (such as
implications) are encoded as conditional statements.

For an expression e not containing accessibility predicates, inhaling e means
assume [[e]], where assume indicates a condition that the verifier is allowed
to assume, and exhaling e means assert [[e]], where assert indicates a proof
obligation. Inhaling an accessibility predicate acc(e.f, p) adds the permission
amount p to the permission mask:

Mask[[[e]], f] := Mask[[[e]], f] + [[p]];

Exhaling acc(e.f, p) checks that the mask contains at least the permission
amount p and then removes p from the permission mask:

assert Mask[[[e]], f] ≥ [[p]];
Mask[[[e]], f] := Mask[[[e]], f] - [[p]];

In addition, exhaling an expression assigns an arbitrary value to those heap loca-
tions for which the mask contains no permission after the exhale. This “havoc”
operation models possible state updates by other method activations, including
those in different threads. It says that if a memory location e.f is no longer
readable by the current method activation, then any knowledge about its value
is removed. In contrast, if the current method activation still holds a non-zero
permission to e.f after the exhale, then no other method activation can have
the full (write) permission to e.f, and so whatever the current method activa-
tion already knows about the value e.f can be soundly retained; that is, can be
framed.

Because of the recursive definition of exhale, exhaling an expression such
as acc(e.f, p) && acc(e.f, p) will exhale acc(e.f, p) twice; the expression is
essentially equivalent to acc(e.f, 2p) (the conjunction behaves multiplicatively
with respect to permissions [18]). This conjunction can be formally related to
the separating conjunction of separation logic [18].

4 Abstract Read Permissions

In this paper, we propose abstract read permissions, which allow the program-
mer to reason abstractly at the level of read and write permissions rather than
concrete fractions. In this section, we introduce the main ideas behind abstract

6



read permissions in method specifications. We discuss details of the encoding in
Sec. 6 and extensions to other forms of specifications in Sec. 8.

We use two main kinds of accessibility predicates. A full permission (cor-
responding to a “1”-valued fractional permission) to a location e.f is denoted
by acc(e.f, 1) and allows a method to both read and write the location. To
specify read permissions, we introduce an accessibility predicate of the form
acc(e.f, rd), called an rd-predicate. The abstract permission expression rd de-
notes a positive amount of permission to e.f and, thus, permits read access,
regardless of what the actual amount is. Every occurrence of rd in the specifica-
tion of one method invocation denotes the same permission amount (regardless
of the location mentioned), but the particular amount may be different for other
method invocations. In particular, different activations of a recursive method
may interpret rd differently.

Compared with the options mentioned in Sec. 2, our abstract permission
expression rd is most similar to a ghost parameter that is passed to the method.
But instead of the programmer having to compute the amount to be passed in,
our approach handles the specification of the amount automatically. Intuitively,
the positive amount chosen is small enough for the caller to handle (that is, it
stays within a budget of the permissions that the caller has) and small enough
that it does not completely rob the caller of all permissions to a memory location
(thus enabling framing). The program verifier will produce an error if such a
value does not exist.

Note that the exact amount chosen for a call is never revealed in our permis-
sion model. Indeed, as we shall see, we encode the amount as a symbolic value
that satisfies certain constraints. The main challenge in our design is to identify
where and how we should constrain the amount for an rd-predicate.

Example. Methods frequently require some permission to a location e.f and
return this permission to their callers. That is, both the pre- and postcondition
mention some rd-predicate such as in method foo in Listing 5. Because both
occurrences of rd in the specification of foo denote the same amount of permis-
sion, method main is able to recombine this permission to obtain full permission
again (as required by the assignment that follows the call). This part of the ex-
ample motivates our design decision that every occurrence of rd in one method
specification is interpreted as the same permission amount. Furthermore, the
permission amount automatically chosen for the call to foo is strictly less than
what the caller has. Therefore, the caller retains some permission to c.val across
the call, which enables framing. In our example, this implies that the value of
c.val cannot be changed by the call to foo; thus, the right-hand side of the last
assignment to c.val evaluates to 5 (as required by the postcondition of main).

4.1 Method Implementations
For the verification of each method implementation, we introduce a new permis-
sion constant πmethod, which is used to interpret every rd-predicate in the specifi-
cation of that method for every location. No precise value is given to πmethod; we

7



method main(c : Cell)
requires acc(c.val, 1)
ensures acc(c.val, 1) && c.val = 5

{
c.val := 0
call foo(c)
c.val := c.val + 5

}
method foo(c : Cell)

requires acc(c.val, rd)
ensures acc(c.val, rd)

{ /* ... */ }

Listing 5. A simple example that illustrates the choice to interpret all rd-predicates
as the same fraction in a method specification.

assume only that it is a proper read permission: 0 < πmethod < 1. The method is
then verified as usual in Chalice: we inhale the precondition, execute the method
body, and then exhale the postcondition. Because the assumption about πmethod
is so weak, a successful verification of the method implementation accommodates
any permission amount between 0 and 1 chosen for the call and transferred by
the caller. Of course, as usual, only those pre-states and parameter values — and
now also the value of rd — that can feasibly satisfy the precondition need to be
considered when verifying the implementation. For example, for a precondition
acc(e.f, rd) && acc(e.f, rd), the precondition can be satisfied only for values
of rd that are bounded by .5.

4.2 Method Calls

A call to a method m is verified using m’s specification, which may mention
rd-predicates. Since we verify that the implementation of m is correct for any
permission amount that one might use to interpret these predicates, the caller
is free to choose any fraction between 0 and 1 to interpret them. But we must
take care when constraining this choice automatically, because if the constraints
are too weak then it will cause callers to fail to verify, and our system would not
be practical to use.

If the called method m requires an rd-predicate to some location e.f, we need
to check only that the caller holds a positive amount of permission to e.f. If
it does, intuitively we can always find a (positive) fraction that is smaller than
the held amount, and we can transfer this fraction to the callee. This idea is
reflected in the encoding of method calls as follows.

We first introduce a permission constant πcall, which is used to interpret
every rd-predicate in the specification of the callee m for every location. πcall
is constrained to be strictly positive (via a Boogie assume statement). When
exhaling m’s precondition, we further constrain πcall to be smaller than the per-
mission amount currently held by the caller, for any location for which m requires

8



an rd-predicate. More precisely, for each rd-predicate to be exhaled (that is, each
occurrence of acc(e.f, rd) for some e.f), we first check that the caller has a pos-
itive amount of permission to e.f, and we constrain πcall to be strictly smaller
than this positive amount. Next, we subtract πcall from the permission mask
(which we can do symbolically even if there will be further constraints on the
value of πcall) and continue exhaling the precondition. This encoding is reflected
in the following Boogie code:

assert Mask[[[e]], f] > 0;
assume πcall < Mask[[[e]], f];
Mask[[[e]], f] := Mask[[[e]], f] - πcall;

The encoding ensures that the callee m is provided with the required read per-
mission for each relevant location, while m’s caller also retains read permissions
to those locations. The latter lets the caller prove that m does not modify those
locations; that is, it enables framing.

Note that our design interprets all rd-predicates in a method specification as
the same permission amount, regardless of the corresponding memory location.
This is not a restriction, because the amount is always implicitly chosen to be
smaller than any corresponding amount held by the caller. Also, note that if
the specification mentions multiple rd-predicates to the same location, then we
effectively choose an amount that is small enough such that giving away all of
those rd-predicates is allowed. This is achieved by constraining πcall multiple
times, once for every rd-predicate. The main soundness argument shows that
the generated constraints are satisfiable: see Sec. 7.

After exhaling the callee’s precondition, our encoding of a call inhales the
postcondition, using the same value πcall to interpret any rd-predicates men-
tioned. This allows the caller to regain the same amount of permission that it
gave away, if rd is mentioned in both the pre- and postcondition. So, in the
example from Listing 5, method main regains write permission to c.val after the
call to foo and, thus, may write to the field.

Example. To illustrate abstract read permissions, we revisit method eval in
Listing 1, with the placeholder π replaced by the abstract permission expression
rd. When the method body of eval in Listing 2 is verified, the permission to
s.map starts out as πmethod after inhaling the precondition. The recursive call to
left.eval succeeds by exhaling a strictly smaller fraction, which is then regained
on inhaling eval’s postcondition. Analogously, a second fraction is given away
and regained for the second recursive call. Thus, the permission to s.map at the
end of the method is again πmethod, which is required to successfully exhale the
postcondition.

This example illustrates that abstract read permissions do not require the
overhead of the ghost-parameter option in Sec. 2; a programmer neither has to
declare ghost parameters nor provide concrete values for ghost parameters when
a method is called. Moreover, they address the first three of the four shortcom-
ings of concrete fractions and counting permissions that we discussed in Sec. 2:
(1) Since the permission amount chosen is context-dependent, it is adjusted for

9



each call, which lends itself to flexible re-use. (2) The specification expresses only
which read and write permissions are requested, but not any concrete permission
amounts. Therefore, they do not contain any irrelevant information. (3) For a
call, rd-predicates are constrained to be strictly smaller than the permission held
by the caller, which allows framing. In particular, s.map 6= null is still known
to hold after the first recursive call because the caller retains some permission
to s.map during the call, which allows the verifier to prove the precondition of
the second call. Abstract read permissions also address shortcoming (4), as we
discuss next.

4.3 Asynchronous Method Calls

Chalice supports asynchronous method calls, using fork and join statements. A
statement tk := fork m() forks off a new thread that executes the method m, and
returns a token which can be used to join the thread and wait on the result r of
the call, using a statement r := join tk. The verification of asynchronous calls
is analogous to synchronous calls, but with the inhale and exhale separated: when
a thread is forked to execute a method, the method’s precondition is exhaled;
at the time a forked thread is joined, the postcondition of the corresponding
method (which in Chalice is determined by the type of the token) is inhaled.

For the same reasons as for synchronous method calls, it is useful for asyn-
chronous calls to interpret all rd-predicates in a method specification as the same
permission amount. In particular, if a fork and its corresponding join occur in
a scoped fashion (in the same method body), we would like to be able to ex-
press that we can match up the same permission amounts from corresponding
rd-predicates. We encode this by adding a ghost field to tokens, which represents
the permission amount used to interpret rd-predicates for the associated asyn-
chronous call. We record this value in the ghost field when a token is created at
a fork statement, and refer to it when interpreting the permissions returned at a
join. This value is never changed; if we encounter the fork/join statements for a
token on the same path through a method body, the same permission fraction is
known to be used for both. However, if the join takes place in a different method
body, no information will be known about this fraction; it is effectively arbitrary
(although positive). In Sec. 5, we show how to avoid this loss of information
through additional specifications.

Example. Let us again consider method eval from Listing 1, with the place-
holder π replaced by the abstract permission expression rd, and the parallel
implementation from Listing 3. The verification of the parallel implementation
is performed as follows. First, the precondition of Add.eval is inhaled, adding
πmethod to the mask for the location s.map. Then, at the first fork statement, our
encoding introduces a fresh constant πfork1 > 0 to interpret all rd-predicates in
the specification of eval for the first fork statement. When exhaling the precon-
dition of the forked method, permission for s.map is (successfully) checked to be
positive, and πfork1 is constrained to be strictly smaller than the currently held

10



amount. Consequently, when πfork1 is transferred to the new thread, the forking
thread still holds a positive permission amount for s.map. The verification of the
second fork statement is analogous, with another constant πfork2 > 0. So after
the two fork statements, the forking method is left with πmethod−πfork1−πfork2.
When inhaling the postcondition at the two join statements, the fractions πfork1
and πfork1 are regained; the verifier knows that these amounts are the same as
for the two fork statements, since the amounts were recorded in a ghost field of
the two tokens. Consequently, the forking method Add.eval now holds πmethod,
which allows it to exhale its postcondition.

This example illustrates that abstract read permissions enable flexible split-
ting of permissions. Since permission amounts are constrained to be strictly
smaller than the amounts held by the current method activation, abstract read
permissions even support unbounded permission splitting. That is, they also ad-
dress the final shortcoming (4) of concrete fractions and counting permissions
discussed in Sec. 2. Note that, in contrast to the ghost-parameter option from
Sec. 2, programmers do not have to devise a strategy to determine how to split
permissions (for instance by splitting the currently held permission in half when-
ever a fraction needs to be transferred) and how to re-combine the permissions,
which is tricky when the order in which the permissions are regained is not
statically known.

4.4 Losing Permission

Using the same permission amount to interpret all rd-predicates in a method
specification is useful for most implementations. However, this can be too restric-
tive when a method m gives away some permission to a location (for instance,
during a fork) and returns what is left. To handle these situations, we introduce
an alternative abstract read expression rd*, which gets interpreted as another
positive, but otherwise unrelated permission amount. In particular, there is no
guarantee that it corresponds to the same amount as any other permission ex-
pression used in the program. So we could specify m to require an rd-predicate
and to ensure an rd*-predicate.

When inhaling an rd*-predicate, no information is assumed about the per-
mission amount it denotes, other than it being positive. Therefore, we can exhale
an rd*-predicate by checking that the current method activation has some per-
mission to the appropriate location, and then interpreting the rd*-predicate as
a strictly smaller amount.

5 Permission Expressions

Our design so far provides only two ways of specifying read permissions, rd-
predicates and rd*-predicates. The resulting expressiveness is insufficient for
some interesting examples. Consider for instance a method m that requires full
permission to some location, transfers an rd-predicate to a newly forked thread
tk, and returns the remaining permission (along with the token tk) to its caller.

11



So far, we can specify that m returns some permission to the caller using an
rd*-predicate, but we have no way of denoting the precise permission amount it
returns (the difference between two permission amounts). However, the precise
information is necessary for the caller to regain full permission by joining tk.

To provide sufficient expressiveness for such examples, we generalise the ac-
cessibility predicates acc(e.f, 1) and acc(e.f, rd) to the new form acc(e.f, p),
where p is a permission expression. Permission expressions p are defined induc-
tively as follows:

p ::= c concrete fraction
| rd abstract read permission
| rd(tk) token read permission
| p1 + p2 permission addition
| p1 − p2 permission subtraction
| n ∗ p permission multiplication

where c is a rational literal (0 < c ≤ 1), tk is a token,
and n is an integer-valued expression

The literal permission expression c subsumes full permissions, and rd is used
as before. The expression rd(tk) refers to the amount of permission associated
with an rd-expression for a particular asynchronous call, via its token. Finally,
we support addition, subtraction, and integer multiplication of permission ex-
pressions. This allows us in particular to specify the exact permission amount
returned by method m above, using the permission expression 1 - rd(tk) in its
postcondition.

In addition to the generalised accessibility predicates, we continue to support
rd*-predicates. However, we decided not to support permission expressions con-
taining rd* because the meaning of such expressions is sometimes un-intuitive
(for instance, 1 - rd* + rd* does not necessarily denote a full permission since
the two occurrences of rd* may be interpreted differently) and because they do
not provide extra expressiveness (for instance, 1 - rd* and rd* express the same
information, namely an unknown, positive permission amount).

6 Encoding

The introduction of permission expressions leads to new subtleties in the encod-
ing of abstract read permissions. This section revises the encoding sketched in
Sec. 4 to address these subtleties.

First, because permission expressions p can include subtraction and multipli-
cation, it is possible to write expressions such as rd-1 that are not guaranteed
to denote valid (that is, positive) permission amounts. Exhaling such permission
amounts naïvely could result in a total permission of more than 1 in a method
activation, leading to unsoundness. Therefore, we impose an additional well-
formedness constraint that each permission expression p must provably denote a
strictly positive amount of permission. The exact implementation of this check
varies for different kinds of permission expression, as shown later in this section.

12



method test(c : Cell)
requires acc(c.f)
ensures acc(c.f, rd*) && c.f = 3

{
c.f := 3;
call bar(c);

}

method bar(c : Cell)
requires acc(c.f, 1-rd) && acc(c.f, rd)

{
c.f := 4;

}

Listing 6. Occurrences of rd in negative positions need to be treated with care to
avoid inconsistencies.

Second, permission expressions require more sophisticated rules for constrain-
ing the permission constants πcall during exhale operations. So far, exhaling an
rd-predicate led to an upper bound on πcall by assuming that πcall is smaller
than the positive amount currently stored in the mask for a particular location.
With the introduction of permission expressions, the abstract permission expres-
sion rd can also occur in negative positions, for instance in acc(e.f, 1-rd). If we
were to adopt the same behaviour when exhaling accessibility predicates with rd
in negative positions, then we also impose lower bounds, leading to potentially
unsatisfiable assumptions.

Exhaling negative occurrences of rd may also lead to difficulties with subse-
quent positive occurrences, as the example in Listing 6 shows. At the call to bar
in the body of test, the mask contains full permission to c.f. Exhaling the first
conjunct of bar’s precondition leaves us with exactly πcall. When the second
conjunct acc(c.f, rd) is exhaled, the encoding from Sec. 4 checks that some
permission is available and then assumes πcall to be strictly smaller than that
amount. This would lead to the inconsistent assumption πcall < πcall.

In our solution to these difficulties, we differentiate between three different
types of permission expressions:

Type 1: Those in which rd does not occur (e.g., 1-rd(tk)).
Type 2: Those in which rd occurs, but only in positive positions (e.g., rd-rd(tk)).
Type 3: Those in which rd occurs in negative position(s) (e.g., 1-rd).

We classify accessibility predicates acc(e.f, p) in the same way, according to
the type of p. The special rd*-predicates are handled like type-2 accessibility
predicates, but with respect to a fresh permission constant for each occurrence.

We now describe how to encode the exhale of a precondition at a (synchronous
or asynchronous) method call, in terms of how we generate appropriate Boogie
code. Inhales are encoded as described earlier; no constraints on πcall are gen-

13



erated. To encode a method call, we first introduce a fresh permission constant
πcall and constrain it to denote a proper read permission:

havoc πcall; assume 0 < πcall < 1;

If the method call is asynchronous, we additionally store πcall in a ghost field
of the corresponding token. (Since the value of this ghost field never changes,
no permission management is necessary for that field.) Then, we exhale the
precondition in three phases, each handling one type of accessibility predicate.

Phase 1: The first phase handles logical expressions without accessibility predi-
cates and those accessibility predicates that denote permission amounts that
were already fixed before the call; that is, predicates of type 1. To do this, we
pass over the precondition, generating assertions for all logical expressions,
and ignoring all accessibility predicates of types 2 and 3. For each accessi-
bility predicate acc(e.f, p) of type 1, we encode the exhale as described in
Sec. 3; that is, by generating the following code:

assert [[p]] > 0;
assert Mask[[[e]], f] ≥ [[p]];
Mask[[[e]], f] := Mask[[[e]], f] - [[p]];

Phase 2: The second phase generates constraints on πcall that ensure that ac-
cessibility predicates of type 2 can be exhaled (if possible), leaving some
remainder. To do this, we pass over the precondition again, ignoring logical
expressions and accessibility predicates of types 1 and 3. For each accessi-
bility predicate acc(e.f, p) of type 2, we assume a rewriting of the form
p = p’ + n * rd (for n > 0) such that p’ is some permission expression not
mentioning rd. We then generate code that constrains the value of πcall:

assert [[p’]] ≥ 0;
assert Mask[[[e]], f] > [[p’]];
assume n * πcall < (Mask[[[e]], f] - [[p’]]);
Mask[[[e]], f] := Mask[[[e]], f] - ([[p’]] + n * πcall);

Phase 3: The third phase exhales the remaining accessibility predicates, with-
out introducing further constraints on πcall. To do this, we pass over the
precondition a third time, ignoring logical expressions and accessibility pred-
icates of types 1 and 2. For each accessibility predicate of type 3, we generate
the same code as in Phase 1.

Constraining πcall after accessibility predicates of type 1 have been exhaled re-
sults in stronger assumptions, since we assume the value of πcall is smaller than
the amounts held after Phase 1 is finished. A permission expression of type 2
comes with the requirement that the part that does not mention rd (the p’
above) is non-negative; thus, the whole expression denotes a positive amount.
Exhaling accessibility predicates of type 3 only after all constraints have been
generated in Phase 2 solves the problems mentioned at the beginning of this
section: exhaling rd in negative positions does not generate any constraints and,
thus, introduces no lower bounds on πcall. Moreover, the precondition of method

14



bar (Listing 6) is now exhaled soundly; we first exhale the second conjunct (in
Phase 2), which constrains πcall and leaves 1−πcall in the mask, and then exhale
the first conjunct (in Phase 3). This does not lead to additional constraints and,
thus, does not introduce inconsistent assumptions.

Any conditionals in the precondition are handled in each phase. However,
the evaluation of such conditionals are unaffected by our manipulation of per-
missions, because conditionals in assertions are syntactically restricted not to
depend on permissions (assertions such as acc(x.f) ⇒ acc(y.f) are forbidden).

After all phases are complete, our encoding removes all knowledge about
locations to which no permission remains in the mask, as we explained in Sec. 3.

7 Soundness

In this section, we give a brief argument for the soundness of our encoding.
A soundness proof for an entire verification methodology using our permission
model is beyond the scope of our paper, and for the most part involves arguments
that are orthogonal to the contributions of this paper.

Compared to the standard fractional permission model, we introduced ab-
stract read permissions and encode them as underspecified constants in Boogie.
The most relevant concern for soundness with respect to this paper is that the
assumptions that we introduce about the constants used to interpret abstract
permission expressions must not lead to contradictions. Apart from the points in
our encoding where these assumptions are generated, abstract read permissions
are treated just as any other permission amounts in permission expressions.

A new constant πcall to denote the underspecified amount is introduced at
each method call in the encoding of the source program. From the end of Phase 2
(as described in the previous section), these amounts are treated just like any
other permission amount with a fixed interpretation. Therefore, it is sufficient
for us to justify that, for each method call, the assumptions generated in Phase 2
are always satisfiable, provided that none of the assertions in the generated code
fail. Operationally (though this is never required in the verifier), one can think
of this amount as being chosen (by some oracle) at the point of the method call,
in such a way that the assumptions are all satisfied; we just need to justify that
this is possible. As we show below, each assumption during Phase 2 imposes a
(strictly positive) upper bound on the possible values of πcall. Since the only
lower bound imposed is 0 and since we assume that permission amounts are
rational numbers, the assumptions are then guaranteed to be satisfiable. In the
following, we focus on the permission expressions presented in Sec. 5, but the
arguments apply equally to rd*-predicates.

Let us consider the exhale of the method precondition for any given method
call, and let πcall be the permission constant introduced for that call. Let us
further consider the amount of permission (for any location) stored in the Mask up
to the start of Phase 2 of exhaling the precondition as a formula representing the
arithmetic performed so far during the verification. We first apply an inductive
argument that during Phase 2 of the exhale, this formula remains expressible

15



in the form ρ − m ∗ πcall, for some formula ρ not mentioning πcall and some
integer m ≥ 0: since πcall is chosen to be a fresh constant for each call, it is clear
that up to the start of Phase 2, the formula representing the current permission
amount in the mask for any location cannot depend on the fresh πcall constant.
Each exhale of an accessibility predicate during Phase 2 subtracts multiples of
πcall from the mask, and so the amount stored remains expressible in the form
ρ− m ∗ πcall.

Now consider the handling of an arbitrary type-2 accessibility predicate
acc(e.f, p) during Phase 2. Just as in the encoding presented in the previous
section, we assume a rewriting of the form p = p’ + n * rd (for some n > 0)
such that p’ is some permission expression not mentioning rd. Using the argu-
ment so far, we may assume that there exist an integer m ≥ 0 and a formula ρ
not mentioning πcall, such that:

Mask[[[e]], f] = ρ− m ∗ πcall

We can now use this equality to rewrite the relevant code generated in Phase 2:
assert Mask[[[e]], f] > [[p’]];
assume n * πcall < (Mask[[[e]], f] - [[p’]]);
Mask[[[e]], f] := Mask[[[e]], f] - ([[p’]] + n * πcall);

into the following (equivalent) form:
assert ρ - m * πcall > [[p’]];
assume πcall < (ρ - [[p’]]) / (m + n);
Mask[[[e]], f] := ρ - [[p’]] - (m + n) * πcall;

Since m and πcall are non-negative, the assertion implies that (ρ − [[p’]]) > 0.
Combined with the facts m ≥ 0 and n > 0, this gives us that (ρ− [[p’]])/(m+ n) is
strictly positive. Therefore, the assumption only imposes an extra strictly posi-
tive upper bound on the permitted values of πcall. Since this argument applies
to each accessibility predicate generated in Phase 2, all assumptions generated
impose strictly positive upper bounds on πcall, and thus, combined with the only
other assumptions about this value, that 0 < πcall < 1, the assumptions about
πcall are always satisfiable.

8 Monitors

Chalice supports monitors, which have an associated monitor invariant, describ-
ing the permissions held and properties guaranteed while the monitor is un-
locked. When a monitor is acquired, the monitor invariant is inhaled, and when
the monitor is released, it is exhaled [12]. It can be useful for a monitor invariant
to provide read permissions to the fields it describes. A typical example is a
single-writer, multiple-reader scenario, which can be handled by splitting a full
permission between the writer thread and the monitor. By acquiring the mon-
itor, a thread can obtain read permission. The writer can combine the fraction
from the monitor with the fraction it already holds to obtain full permission.

16



Supporting abstract read permissions for monitor invariants is more difficult
than for methods. If we allowed a thread to choose a permission amount for rd-
expressions when exhaling the monitor invariant upon release (analogously to
choosing the amount when exhaling a method precondition) then one could not
soundly assume that the next acquire in the same thread will inhale the same
amount — other threads might have acquired and released the monitor in the
meantime and interpreted the rd-expressions in the monitor invariant differently.
Similar issues arise with folding and unfolding abstract predicates [17] as well as
with sending and receiving messages [14].

If the threads interacting with a monitor never need to know that the amount
of read permission that they inhale from a monitor invariant is related to some
other amount earlier in the program execution, then we can employ rd*-predicates
in the monitor invariant and handle them just as for method calls.

However, in situations like the single-writer, multiple-reader example above,
we must associate a persistent amount of permission with a monitor invariant
to allow the writer thread to obtain full permission. We have considered various
solutions to this problem. One is to fix the permission amount that rd-expressions
are interpreted with “once and for all”, either for all monitors (which has the
advantage that such permissions can be transferred between monitors), or when
a new monitor is created (which has the advantage that the amount can be
chosen with respect to what is held at that point). An alternative is to store the
permission amount in a ghost field of the object, similarly to the ghost-parameter
option in Sec. 2. This is more flexible, but permissions to this ghost field must
then be appropriately handled, and information about the field value needs to
be communicated in specifications for this to really give an advantage.

In our implementation, we currently take the simplest approach described
above; we generate one (underspecified) permission constant to interpret all rd-
expressions in monitor invariants, abstract predicates, and message invariants.
This has been sufficiently expressive, but we are also evaluating the other options.

9 Related Work

Fractional permissions were proposed by Boyland [4]. He uses them in a type
system to check non-interference of the branches of a parallel composition and
to show that non-interfering parallel compositions have deterministic results.
Zhao [21] uses fractional permissions to prevent data races in concurrent Java
programs. Neither of the two systems supports the verification of a program
w.r.t. to a programmer-supplied specification.

The use of fractional permissions for program verification was first explored
in the context of separation logic. Bornat et al. [3], Gotsman et al. [7], and
Hobor et al. [9] all employ separation logic with fractional permissions. They use
concrete fractions and logical variables in specifications, which has the drawbacks
discussed in Sec. 2.

Our original verification methodology for Chalice [12] supports fractional per-
missions (expressed as integer percentages) and infinitesimal permissions, which

17



are similar to counting permissions. We built on implicit dynamic frames [20],
which allows us to generate first-order verification conditions, which can be han-
dled by automatic SMT solvers. The permission model used in this work suffers
from the shortcomings discussed in Sec. 2. To solve these problems, we intro-
duced the idea of underspecified, constrained fractions in a workshop paper [8].
The present paper extends our earlier work with more detailed explanations
(especially of the encoding) and with a soundness argument.

Other systems have also aimed to package fractions in more abstract ways. In
his original work on fractional permissions, Boyland uses a type system that al-
lows permission polymorphism [4]. A non-deterministic type checker determines
the possible ways fraction variables used in method signatures can be instan-
tiated. Only a sketch of an algorithm for coming up with the instantiation is
provided; it is not clear how the sketched approach deals with repeated fraction
variables or with fraction variables occurring in negative positions.

The separation-logic based verifier VeriFast supports fractional permissions
and logical variables [10]. When a logical variable specifies a permission amount,
there is some limited support to set it automatically at a call site. However, only
the first use of the variable is considered (so fractions cannot be correlated) and
that first use will soak up all the permission that the caller has (so framing is
not supported).

Bierhoff et al. [2, 16] recently presented fraction-free permission type systems.
Their permissions, which have intuitive names such as “unique” and “local im-
mutable”, are held by variables, whereas our permissions are held by method
activation records (and monitors, etc.). Permission transfers happen at assign-
ments and parameter passing. If the target of the transfer only needs a fraction,
the type system automatically carves up the permission held. Permissions that
cross method boundaries can be borrowed (meaning they will be transferred back
upon return of the method) or consumed. Borrowing is related to our rule of in-
terpreting all rd-expressions in one method specification as the same permission
amount, while consuming is related to our rd*-predicates.

Bierhoff [2] presents a verification system that makes use of permissions as a
subsequent step after permission type checking. The integration of both steps in
our system provides more expressiveness, for instance, because permissions can
be denoted conditionally, using logical implication.

Recent work of Militão et al. [15] generalizes fractional permissions to user-
defined views, which can describe permissions to sets of fields, and properties
such as reference uniqueness. They also employ fractions whose values are hidden
from the user, but do not have an analogue to permission expressions (cf. Sec. 5).

There are other ways of specifying that a method will treat something as
read-only. The C verifier VCC employs claims [5], which can specify a certain
set of objects which cannot be modified while the claim exists. Using reference
counting, an object keeps track of how many outstanding claims it has. Claims
are themselves (ghost) objects, so there can be claims on claims. This allows
programs like our eval example in Sec. 2 to be specified and verified, but at the
cost of having to write the (ghost) code that sets up and destroys the claims.

18



10 Conclusions

We have presented a novel methodology for specifying sequential and concur-
rent programs based on fractional permissions. Our abstract read permissions
allow programmers to specify access permissions at the level of read and write
permissions, without the need to reason using a concrete mathematical model
or syntax. Our methodology avoids shortcomings of working with concrete frac-
tions and, by picking a judicious interpretation for abstract read permissions in
method specifications, imposes less specification and verification overhead than
solutions based on ghost parameters or logical variables. In cases where the dif-
ferences between permission amounts are important, our permission expressions
provide a natural and abstract way of conveying the relevant information.

We have explained our methodology in terms of implicit dynamic frames
and verification condition generation. However, abstract read permissions are
independent of any particular permission logic or verification technique. So far,
our methodology has been implemented in two verifiers for Chalice: one based on
verification condition generation and one on symbolic execution. Both verifiers
make use of the support for real numbers in Z3 [6].

Our permission expressions support the addition and subtraction of a bounded
number of rd-expressions. As future work, we plan to handle the (statically) un-
bounded case, for instance, by supporting mathematical sums over unbounded
sets or sequences. We could then specify a method that forks an unbounded num-
ber of threads (each requiring read permission to some shared data) and stores
the tokens in a list. By removing tokens from the list, we could easily support a
specification for rejoining the threads, regardless of the order of joins. This kind
of example would be difficult to support with concrete fractional permissions.

We are also exploring other possible uses of abstract read permissions; ex-
ploiting the use of permission amounts which can be freely constrained (from
above). We are considering the possibility of manually introducing such amounts
in other verification situations, and also basing an approach to handling im-
mutable data on this novel specification concept.

Acknowledgements

We would like to thank the attendees and reviewers of the Formal Techniques for
Java-like Programs 2011 workshop, as well as the attendees of the Dublin Con-
currency Workshop 2011, particularly Andrew Butterfield and Peter O’Hearn,
for encouraging feedback on a preliminary presentation of this work. We thank
John Boyland for discussions of the comparisons with fractional permissions. We
are grateful to Malte Schwerhoff for many discussions about the details of our
model and to Martin Vechev for useful feedback on a draft of this paper.

19



References

1. M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and K. R. M. Leino. Boogie:
A modular reusable verifier for object-oriented programs. In FMCO, volume 4111
of LNCS, pages 364–387. Springer, Sept. 2006.

2. K. Bierhoff. Automated program verification made SYMPLAR: symbolic permis-
sions for lightweight automated reasoning. In ONWARD, pages 19–32. ACM, 2011.

3. R. Bornat, C. Calcagno, P. O’Hearn, and M. Parkinson. Permission accounting in
separation logic. In POPL, pages 259–270. ACM, 2005.

4. J. Boyland. Checking interference with fractional permissions. In SAS, volume
2694 of LNCS, pages 55–72. Springer, 2003.

5. E. Cohen, M. Moskal, W. Schulte, and S. Tobies. Local verification of global
invariants in concurrent programs. In CAV 2010, volume 6174 of LNCS, pages
480–494. Springer, 2010.

6. L. de Moura and N. Bjørner. Z3: An efficient SMT solver. In TACAS, volume 4963
of LNCS, pages 337–340. Springer, 2008.

7. A. Gotsman, J. Berdine, B. Cook, N. Rinetzky, and M. Sagiv. Local reasoning
for storable locks and threads. In APLAS, volume 4807 of LNCS, pages 19–37.
Springer, 2007.

8. S. Heule, K. R. M. Leino, P. Müller, and A. J. Summers. Fractional permissions
without the fractions. In Formal Techniques for Java-like Programs (FTfJP), 2011.

9. A. Hobor, A. W. Appel, and F. Z. Nardelli. Oracle semantics for concurrent
separation logic. In ESOP, volume 4960 of LNCS, pages 353–367. Springer, 2008.

10. B. Jacobs, J. Smans, and F. Piessens. A quick tour of the VeriFast program verifier.
In APLAS 2010, volume 6461 of LNCS, pages 304–311. Springer, 2010.

11. I. T. Kassios, P. Müller, and M. Schwerhoff. Comparing verification condition
generation with symbolic execution: an experience report. In VSTTE, volume
7152 of LNCS, pages 196–208. Springer, 2012.

12. K. R. M. Leino and P. Müller. A basis for verifying multi-threaded programs. In
ESOP, volume 5502 of LNCS, pages 378–393. Springer, 2009.

13. K. R. M. Leino, P. Müller, and J. Smans. Verification of concurrent programs with
Chalice. In FOSAD Lectures, volume 5705 of LNCS, pages 195–222. Springer, 2009.

14. K. R. M. Leino, P. Müller, and J. Smans. Deadlock-free channels and locks. In
ESOP, volume 6012 of LNCS, pages 407–426. Springer, 2010.

15. F. Militão, J. Aldrich, and L. Caires. Aliasing control with view-based typestate.
In FTfJP, pages 7:1–7:7. ACM, 2010.

16. K. Naden, R. Bocchino, J. Aldrich, and K. Bierhoff. A type system for borrowing
permissions. In POPL, pages 557–570. ACM, 2012.

17. M. Parkinson and G. Bierman. Separation logic and abstraction. In POPL. ACM,
2005.

18. M. J. Parkinson and A. J. Summers. The relationship between separation logic and
implicit dynamic frames. Logical Methods in Computer Science, 2012. To appear.

19. J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In
LICS. IEEE, 2002.

20. J. Smans, B. Jacobs, and F. Piessens. Implicit dynamic frames: Combining dynamic
frames and separation logic. In ECOOP, pages 148–172. Springer, 2009.

21. Y. Zhao. Concurrency Analysis based on Fractional Permission System. PhD
thesis, The University of Wisconsin–Milwaukee, 2007.

20


