
Abstract Read Permissions

Fractional Permissions without the Fractions

Alex Summers
ETH Zurich

Joint work with: Stefan Heule, Rustan Leino, Peter Müller
 ETH Zurich Microsoft Research ETH Zurich

Overview

• Verification of (race-free) concurrent programs
using fractional permissions

• Background

• Identify the problem

• Abstract read permissions

• Handling calls, fork/join

• Permission expressions

• Conclusions

Fractional Permissions Boyland, SAS’03

• Provide a way of describing disciplined (race-free)
use of shared memory locations

• Many readers ✓ one writer ✓ never both

• Heap locations are managed using permissions

• Permission amounts are fractions p from [0,1]

▫ p=0 (no permission)

▫ 0<p<1 (read permission)

▫ p=1 (read/write permission)

• Permissions are passed between methods/threads

▫ can be split and recombined, never duplicated

Notation

• Examples shown using Implicit Dynamic
Frames assertions [Smans’09].

• Permissions represented in assertions by
“accessibility predicates”: acc(x.f, p)

▫ means we have permission p to location x.f

• Permissions treated multiplicatively; i.e.,

▫ acc(x.f, p) && acc(x.f, p) ≡ acc(x.f, 2p)

• Related to Sep. Logic [Parkinson/Summers’12]

▫ Roughly: read acc(x.f,p) as x.f | _

• This work applies to any such program logic

• We use Chalice language syntax [Leino/Müller]

p

Inhale and Exhale

• “inhale P” and “exhale P” are used to encode
transfers between threads/calls

• “inhale P” means:

▫ assume heap properties in p

▫ gain permissions in p

• “exhale P” means:

▫ assert heap properties in p

▫ check and give up permissions

▫ havoc heap locations to which
no permission is now held

void m()

requires P

ensures Q

{

 // inhale P

 ...

 // exhale P

 call m()

 // inhale Q

 ...

 // exhale Q

}

Inhale and Exhale

• “inhale P” and “exhale P” are used to encode
transfers between threads/calls

• “inhale P” means:

▫ assume heap properties in p

▫ gain permissions in p

• “exhale P” means:

▫ assert heap properties in p

▫ check and give up permissions

▫ havoc heap locations to which
no permission is now held

void m()

requires P

ensures Q

{

 // inhale P

 ...

 // exhale P

 call m()

 // inhale Q

 ...

 // exhale Q

}

Inhale and Exhale

• “inhale P” and “exhale P” are used to encode
transfers between threads/calls

• “inhale P” means:

▫ assume heap properties in p

▫ gain permissions in p

• “exhale P” means:

▫ assert heap properties in p

▫ check and give up permissions

▫ havoc heap locations to which
no permission is now held

void m()

requires P

ensures Q

{

 // inhale P

 ...

 // exhale P

 call m()

 // inhale Q

 ...

 // exhale Q

}

Inhale and Exhale

• “inhale P” and “exhale P” are used to encode
transfers between threads/calls

• “inhale P” means:

▫ assume heap properties in p

▫ gain permissions in p

• “exhale P” means:

▫ assert heap properties in p

▫ check and give up permissions

▫ havoc heap locations to which
no permission is now held

void m()

requires P

ensures Q

{

 // inhale P

 ...

 // exhale P

 call m()

 // inhale Q

 ...

 // exhale Q

}

Inhale and Exhale

• “inhale P” and “exhale P” are used to encode
transfers between threads/calls

• “inhale P” means:

▫ assume heap properties in p

▫ gain permissions in p

• “exhale P” means:

▫ assert heap properties in p

▫ check and give up permissions

▫ havoc heap locations to which
no permission is now held

void m()

requires P

ensures Q

{

 // inhale P

 ...

 // exhale P

 call m()

 // inhale Q

 ...

 // exhale Q

}

Inhale and Exhale

• “inhale P” and “exhale P” are used to encode
transfers between threads/calls

• “inhale P” means:

▫ assume heap properties in p

▫ gain permissions in p

• “exhale P” means:

▫ assert heap properties in p

▫ check and give up permissions

▫ havoc heap locations to which
no permission is now held

void m()

requires P

ensures Q

{

 // inhale P

 ...

 // exhale P

 call m()

 // inhale Q

 ...

 // exhale Q

}

Inhale and Exhale

• “inhale P” and “exhale P” are used to encode
transfers between threads/calls

• “inhale P” means:

▫ assume heap properties in p

▫ gain permissions in p

• “exhale P” means:

▫ assert heap properties in p

▫ check and give up permissions

▫ havoc heap locations to which
no permission is now held

void m()

requires P

ensures Q

{

 // inhale P

 ...

 // exhale P

 call m()

 // inhale Q

 ...

 // exhale Q

}

Difficulties with Fractional Permissions

• Concrete fractions cause tension: caller vs callee

 method evaluate(Cell c)

 requires acc(c.f, ?)

 ensures acc(c.f, ?)

{

 /* ... calculations ... */

}

Difficulties with Fractional Permissions

• Concrete fractions cause tension: caller vs callee

 method evaluate(Cell c)

 requires acc(c.f, 2/3)

 ensures acc(c.f, 2/3)

{

 /* ... calculations ... */

}

method main(Cell c)

 requires acc(c.f, 1/2)

{

 call evaluate(c) ✘

}

Difficulties with Fractional Permissions

• Concrete fractions cause tension: caller vs callee

▫ Reuse can be made difficult

▫ Framing may be compromised

• Aliasing information is relevant to values chosen

 method equals(Cell c)
 requires acc(this.f, ?) && acc(c.f, ?)

 ensures acc(this.f, ?) && acc(c.f, ?)

{

 /* ... comparisons ... */

}

Difficulties with Fractional Permissions

• Concrete fractions cause tension: caller vs callee

▫ Reuse can be made difficult

▫ Framing may be compromised

• Aliasing information is relevant to values chosen

 method equals(Cell c)
 requires acc(this.f, 2/3) && acc(c.f, 2/3)

 ensures acc(this.f, 2/3) && acc(c.f, 2/3)

{

 /* ... comparisons ... */

}

What if
this = c ?

Difficulties with Fractional Permissions

• Concrete fractions cause tension: caller vs callee

▫ Reuse can be made difficult

▫ Framing may be compromised

• Aliasing information is relevant to values chosen

 method equals(Cell c)
 requires acc(this.f, 1/3) && acc(c.f, 1/3) &&

 (this != c ==> acc(this.f, 1/3) && acc(c.f, 1/3))

 ensures acc(this.f, 1/3) && acc(c.f, 1/3) &&

 (this != c ==> acc(this.f, 1/3) && acc(c.f, 1/3))

{

 /* ... comparisons ... */

}

Difficulties with Fractional Permissions

• Concrete fractions cause tension: caller vs callee

▫ Reuse can be made difficult

▫ Framing may be compromised

• Aliasing information is relevant to values chosen

• Recursive methods require parameterisation

 method m(Cell c)

 requires acc(c.f, ?)

 ensures acc(c.f, ?)

{

 // do stuff

 call m(c)

 // do more stuff

}

Difficulties with Fractional Permissions

• Concrete fractions cause tension: caller vs callee

▫ Reuse can be made difficult

▫ Framing may be compromised

• Aliasing information is relevant to values chosen

• Recursive methods require parameterisation

 method m(Cell c, Perm p)

 requires acc(c.f, ?)

 ensures acc(c.f, ?)

{

 // do stuff

 call m(c)

 // do more stuff

}

Difficulties with Fractional Permissions

• Concrete fractions cause tension: caller vs callee

▫ Reuse can be made difficult

▫ Framing may be compromised

• Aliasing information is relevant to values chosen

• Recursive methods require parameterisation

 method m(Cell c, Perm p)

 requires acc(c.f, p)

 ensures acc(c.f, p)

{

 // do stuff

 call m(c)

 // do more stuff

}

Difficulties with Fractional Permissions

• Concrete fractions cause tension: caller vs callee

▫ Reuse can be made difficult

▫ Framing may be compromised

• Aliasing information is relevant to values chosen

• Recursive methods require parameterisation

 method m(Cell c, Perm p)

 requires acc(c.f, p)

 ensures acc(c.f, p)

{

 // do stuff

 call m(c, p/2)

 // do more stuff

}

Difficulties with Fractional Permissions

• Concrete fractions cause tension: caller vs callee

▫ Reuse can be made difficult

▫ Framing may be compromised

• Aliasing information is relevant to values chosen

• Recursive methods require parameterisation

• Manual book-keeping is tedious

▫ Creates “noise” in specifications and new mistakes

▫ Programmers ideally only need care about:

 when does a thread have full (write) permission?

 when does a thread have some (read) permission?

 … and differences in amounts of permission (…later)

Example: Workers Tree

class Node {

 Node l, r

 Outcome method work(Data data)

 requires «permission to data.f»

 ensures «permission to data.f»

 {

 Outcome out := new Outcome()

 if (l != null) left := fork l.work(data)

 if (r != null) right := fork r.work(data)

 /* perform work on this node, using data.f */

 if (l != null) out.combine(join left)

 if (r != null) out.combine(join right)

 return out

 }

}

Worker 1

Worker 3

Worker 6Worker 5 Worker 8Worker 4

Worker 2

How much permission?

Abstract Read Permissions

• Introduce abstract read permissions: acc(o.f,rd)

▫ corresponds to a fixed, positive, and unknown
fraction

▫ positive amount: allows reading the location o.f

• Specifications are written using

▫ acc(o.f,1) to represent the full permission
(read/write)

▫ acc(o.f,rd) for read permissions

• In general, different read permissions can
correspond to different fractions

Matching rd permissions

• Permission is often required and returned later

• Rule: All read permissions acc(o.f,rd) in pre- and
postconditions correspond to the same amount

method evaluate(Cell c)

 requires acc(c.f, rd)

 ensures acc(c.f, rd)

{

 /* ... calculations ... */

}

method main(Cell c)

 requires acc(c.f, 1)

{

 c.f := 0

 call evaluate(c)

 c.f := 1

}

method m(Cell c)

 requires acc(c.f,rd)

 ensures acc(c.f,rd)

{

 // do stuff

 call m(c)

 // do more stuff

}

Encoding Method Calls
We use Mask[o.f] to denote the permission amount held to o.f

method m(Cell c)

 requires acc(c.f,rd)

 ensures acc(c.f,rd)

{

 // do stuff

 call m(c)

 // do more stuff

}

Exhale postcondition
• Check permission: assert Mask[c.f] >= 𝜋m
• Remove permission: Mask[c.f] -= 𝜋m

Inhale postcondition: Mask[c.f] += 𝜋call

Encoding Method Calls

Method initial state: ∀o,f. Mask[o.f] == 0

Declare fresh constant 𝜋m to interpret rd
amounts, and assume 0 < 𝜋m < 1

Declare 0 < 𝜋call < 1 (for rd in recursive call)
Exhale precondition for recursive call
• Check that we have some permission

assert Mask[c.f] > 0

• Constrain 𝜋call to be smaller than what we have
assume 𝜋call < Mask[c.f]

• Give away this amount: Mask[c.f] -= 𝜋call

• Havoc heap value at c.f if no permission (false)

Inhale precondition: Mask[c.f] += 𝜋m

Revisiting aliasing

• Recall previous example:

method equals(Cell c)

 requires acc(this.f, ?) && acc(c.f, ?)

 ensures acc(this.f, ?) && acc(c.f, ?)

{

 /* ... comparisons ... */

}

Revisiting aliasing

• Recall previous example:

• Consider the encoding of a call to this method:
assert Mask[this.f] > 0;

assume 𝜋call < Mask[this.f];

Mask[this.f] -= 𝜋call;

assert Mask[c.f] > 0;

assume 𝜋call < Mask[c.f];

Mask[c.f] -= 𝜋call;

method equals(Cell c)

 requires acc(this.f, rd) && acc(c.f, rd)

 ensures acc(this.f, rd) && acc(c.f, rd)

{

 /* ... comparisons ... */

}

What if
this = c ?

Revisiting aliasing

• Recall previous example:

• Consider the encoding of a call to this method:
assert Mask[this.f] > 0;

assume 𝜋call < Mask[this.f];

Mask[this.f] -= 𝜋call;

assert Mask[c.f] > 0;

assume 𝜋call < Mask[c.f];

Mask[c.f] -= 𝜋call;

method equals(Cell c)

 requires acc(this.f, rd) && acc(c.f, rd)

 ensures acc(this.f, rd) && acc(c.f, rd)

{

 /* ... comparisons ... */

}

What if
this = c ?

Implicitly, we
assume 2 ∗ 𝜋call to

be smaller than the
amount first held

Workers example revisited

class Node {

 Node l,r

 Outcome method work(Data data)

 requires «permission to data.f»

 ensures «permission to data.f»

 {

 Outcome out := new Outcome()

 if (l != null) left := fork l.work(data)

 if (r != null) right := fork r.work(data)

 /* perform work on this node, using data.f */

 if (l != null) out.combine(join left)

 if (r != null) out.combine(join right)

 return out

 }

}

Worker 1

Worker 3

Worker 6Worker 5 Worker 8Worker 4

Worker 2

Workers example revisited

• rd-permission
sufficient for
this example

class Node {

 Node l,r

 Outcome method work(Data data)

 requires acc(data.f, rd)

 ensures acc(data.f, rd)

 {

 Outcome out := new Outcome()

 if (l != null) left := fork l.work(data)

 if (r != null) right := fork r.work(data)

 /* perform work on this node, using data.f */

 if (l != null) out.combine(join left)

 if (r != null) out.combine(join right)

 return out

 }

}

Some (unknown) amount(s)
are given away

And retrieved again later on

class Management {

 Data d; // shared data

 ...

 void method manage(Workers w) {

 // ... make up some work

 out1 := call w.ask(task1, d);

 out2 := call w.ask(task2, d);

 // ... drink coffee

 join out1; join out2;

 d.f := // modify data

 }
class Workers {

 Outcome method do(Task t, Data d)

 { ... }

 token<do> method ask(Task t, Data d)

 {

 out := fork do(t,d);

 return out;

 }

}

How do we know we get back all
the permissions we gave away?

Intuitively, ask returns the

permission it was passed minus the
permission held by the forked thread

do requires read access to
(field f of) the shared data

ask requires read access

to the shared data, and
gives some permission to
the newly-forked thread

Permission expressions
• We need a way to express (unknown) amounts

of read permission held by a forked thread

• We also need to be able to express the difference
between two permission amounts

• We generalise our permissions: acc(e.f, p)

▫ where P is a permission expression:

 1 (and other concrete fractions)

 rd (abstract read permission, as before)

 rd(tk) where tk is a token for a forked thread

 p1 + p2 or p1 - p2 (sums and differences)

• Easy to encode, and is much more expressive...

class Management {

 Data d; // shared data

 ...

 void method manage(Workers w) {

 // ... make up some work

 out1 := call w.ask(task1, d);

 out2 := call w.ask(task2, d);

 // ... drink coffee

 join out1; join out2;

 d.f := // modify data

 }
class Workers {

 Outcome method do(Task t, Data d)

 { ... }

 token<do> method ask(Task t, Data d)

 {

 out := fork do(t,d);

 return out;

 }

}

requires acc(d.f, rd)

ensures acc(d.f, rd – rd(result))

requires acc(d.f, rd)

ensures acc(d.f, rd)

requires acc(d.f, 1)

ensures acc(d.f, 1)

class Management {

 Data d; // shared data

 ...

 void method manage(Workers w) {

 // ... make up some work // 1

 out1 := call w.ask(task1, d);

 out2 := call w.ask(task2, d);

 // ... drink coffee

 join out1; join out2;

 d.f := // modify data

 }
class Workers {

 Outcome method do(Task t, Data d)

 { ... }

 token<do> method ask(Task t, Data d)

 {

 out := fork do(t,d);

 return out;

 }

}

requires acc(d.f, rd)

ensures acc(d.f, rd – rd(result))

requires acc(d.f, rd)

ensures acc(d.f, rd)

requires acc(d.f, 1)

ensures acc(d.f, 1)

class Management {

 Data d; // shared data

 ...

 void method manage(Workers w) {

 // ... make up some work // 1

 out1 := call w.ask(task1, d); // 1 - rd(out1)

 out2 := call w.ask(task2, d);

 // ... drink coffee

 join out1; join out2;

 d.f := // modify data

 }
class Workers {

 Outcome method do(Task t, Data d)

 { ... }

 token<do> method ask(Task t, Data d)

 {

 out := fork do(t,d);

 return out;

 }

}

requires acc(d.f, rd)

ensures acc(d.f, rd – rd(result))

requires acc(d.f, rd)

ensures acc(d.f, rd)

requires acc(d.f, 1)

ensures acc(d.f, 1)

class Management {

 Data d; // shared data

 ...

 void method manage(Workers w) {

 // ... make up some work // 1

 out1 := call w.ask(task1, d); // 1 - rd(out1)

 out2 := call w.ask(task2, d); // 1 - rd(out1) – rd(out2)

 // ... drink coffee

 join out1; join out2;

 d.f := // modify data

 }
class Workers {

 Outcome method do(Task t, Data d)

 { ... }

 token<do> method ask(Task t, Data d)

 {

 out := fork do(t,d);

 return out;

 }

}

requires acc(d.f, rd)

ensures acc(d.f, rd – rd(result))

requires acc(d.f, rd)

ensures acc(d.f, rd)

requires acc(d.f, 1)

ensures acc(d.f, 1)

class Management {

 Data d; // shared data

 ...

 void method manage(Workers w) {

 // ... make up some work // 1

 out1 := call w.ask(task1, d); // 1 - rd(out1)

 out2 := call w.ask(task2, d); // 1 - rd(out1) – rd(out2)

 // ... drink coffee

 join out1; join out2; // 1

 d.f := // modify data

 }
class Workers {

 Outcome method do(Task t, Data d)

 { ... }

 token<do> method ask(Task t, Data d)

 {

 out := fork do(t,d);

 return out;

 }

}

requires acc(d.f, rd)

ensures acc(d.f, rd – rd(result))

requires acc(d.f, rd)

ensures acc(d.f, rd)

requires acc(d.f, 1)

ensures acc(d.f, 1)

class Management {

 Data d; // shared data

 ...

 void method manage(Workers w) {

 // ... make up some work // 1

 out1 := call w.ask(task1, d); // 1 - rd(out1)

 out2 := call w.ask(task2, d); // 1 - rd(out1) – rd(out2)

 // ... drink coffee

 join out1; join out2; // 1

 d.f := // modify data // ✓ can write

 }
class Workers {

 Outcome method do(Task t, Data d)

 { ... }

 token<do> method ask(Task t, Data d)

 {

 out := fork do(t,d);

 return out;

 }

}

requires acc(d.f, rd)

ensures acc(d.f, rd – rd(result))

requires acc(d.f, rd)

ensures acc(d.f, rd)

requires acc(d.f, 1)

ensures acc(d.f, 1)

Conclusions

• Presented a specification methodology

▫ similar expressiveness to fractional permissions

▫ avoids concrete values for read permissions

▫ allows the user to reason about read/write abstractly

• Provided an efficient encoding (details in paper)

• Soundness argument also in the paper

• Implemented in the Chalice tool

▫ fork/join, monitors, channels, loops, predicates

▫ underlying type for permissions uses Z3 reals

▫ performance similar to with concrete fractions only

Future Work

• We cannot express the permission left over after
we fork off an unbounded number of threads

▫ mathematical sums in permission expressions

▫ e.g., acc(x, 1 – Σi rd(tki))

• Exploit fact that abstract read permissions can
be repeatedly constrained from above

▫ immutability/frozen objects (work in progress)

• rd amounts encoded as prophecy variables

▫ treatment could be generalised to allow more uses

▫ e.g., equal split amongst unknown no. of threads

Questions?

43

