
IFC Inside: Retrofitting

Languages with Dynamic

Information Flow Control

Stefan Heule, Deian Stefan, Edward Z. Yang,
John C. Mitchell, Alejandro Russo

Stanford University, Chalmers University

Motivating Example: Web Security

• Website uses check_strength(pw) from

some library

▫ Danger: the library could send the password to
bad.com

▫ Website author has little control over this

[Van Acker et al., CODASPY’15]

Web Security Today

• Code written by many different parties

▫ Potentially mutually distrusting parties (website
code, utility/framework libraries, advertising
code, …)

▫ Computing over sensitive data (passwords,
healthcare information, banking data)

Possible Solution: IFC

• Information flow control …

▫ … tracks where information flows

▫ … allows policies to restrict flows of information

• In the example

▫ Label password as sensitive

▫ Restrict its dissemination (e.g. to arbitrary
webservers)

What kind of IFC?

• Various trade-offs in IFC systems

▫ Dynamic vs static

▫ What kind of labels

▫ Granularity at with information is tracked

• Sweetspot: dynamic, coarse-grained IFC

Coarse-grained IFC

• The program is split into computational units
(tasks)

▫ All data within one task has a single label

• Different computational units can communicate

𝑙1 𝑙2 𝑙3

This Talk

• Given an existing programming language, how
can we add dynamic IFC?

• Minimal changes to language

▫ Simplifies implementation

• Formal security guarantees

Approach Overview

• Given a target language
▫ Any programming language for which we can control

external effects

• Define an IFC language
▫ Minimal calculus, only IFC features

• Combine target and IFC language

▫ Allow target language to call into IFC, and vice-versa

• Careful definition of the IFC language allows the
overall system to provide isolation, regardless of what
the target language does

IFC language

• Tag tasks with security labels

▫ Labels form a lattice, and determine how data can
flow inside an application

• Example lattice

▫ Two labels H (high) and L (low)

▫ Flow from H to L is not allowed

H

L

IFC language: labels

• Get and set the current label

▫ setLabel, getLabel

• Setting the label is only allowed to raise the label

• Can also compute on labels

▫ ⊑,⊓,⊔

𝐿 𝐻
setLabel 𝑯

IFC language: sandboxing

• Isolate an expression as a new task

▫ sandbox e

• New task has separate state

𝑙

1

𝑙

e

𝑙

1 2

sandbox e

Inter-task communication

• Tasks can send and receive messages

• Send message v to task i, protected by label 𝒍
▫ send i 𝒍 v

▫ Can only send messages at or above current label

𝐿

1

𝐻

2

1, 𝐻, 𝑣

𝐿

1

𝐻

2

send 2 𝑯 v

Inter-task communication

• Receiving either binds a message v and sender i in
𝒆𝟏, or execution continues in 𝒆𝟐 (if there is no
message)

▫ Messages that are above the current level are never
received

recv i,v in 𝒆𝟏 else 𝒆𝟐

𝐫𝐞𝐜𝐯

𝐿

2

1, 𝐻, 𝑣

𝒆𝟐

𝐿

2

𝐫𝐞𝐜𝐯

𝐻

2

1, 𝐻, 𝑣

𝒆𝟏
[v,i]

𝐻

2

What is a programming language?

• Need a formal definition of a language

▫ Global store 𝚺

▫ Evaluation context 𝐄

▫ Expression syntax 𝐞, some expressions are values 𝐯

▫ Reduction relation →

• This is the target language

Example: Mini-ECMAScript

Notation

• Rules are standard, except we use ℰΣ instead of
normal context E

• Obtain normal semantics with

• Later, we re-interpret what ℰ stands for

IFC language

• Also defined in terms of a special ℰ

Embedding [Matthews and Findler, POPL’07]

• Extend IFC and target language syntax

• Re-interpret context and reduction relation

Security Guarantees

• Non-interference:

▫ Intuitively: An attacker that can only see values up
to level 𝑙 should not see a difference in behavior if
values at level 𝑙′ > 𝑙 are changed

𝐿

1

1, 𝐻, 33

𝐻

2

𝐻

3

𝐿

1

1, 𝐻,−1

𝐻

4
≈𝐿

Security Guarantees

• Non-interference:

▫ Intuitively: An attacker that can only see values up
to level 𝑙 should not see a difference in behavior if
values at level 𝑙′ > 𝑙 are changed

𝐿

1

1, 𝐻, 33

𝐻

2

𝐻

3

𝐿

1

1, 𝐻,−1

𝐻

4
≈𝐿

Erasure function

• Formally, we need an erasure function 𝜀𝑙
▫ Erases all data above 𝑙 to ∎

▫ Program 𝑐1 and 𝑐2 are 𝑙-equivalent, 𝑐1 ≈𝑙 𝑐2, iff
𝜀𝑙 𝑐1 = 𝜀𝑙(𝑐2)

• For our system, 𝜀𝑙 erases the following:

▫ Any tasks with current label above 𝑙

▫ Any messages with label above 𝑙

Termination sensitive non-interference

(TSNI)

For all programs 𝑐1, 𝑐2, 𝑐1
′ and labels 𝑙, such that

then there exists 𝑐2
′ such that

Theorem: Any target language combined with
our IFC language with round robin scheduling
satisfies TSNI.

Practicality

• Formalism requires separate heaps

• An implementation might want to have one heap

• Naïve implementation is insecure

▫ Shared references, need additional checks

𝐿

1

𝐻

2

𝐿

1

𝐻

2

Modifying the Combined Language

• Single heap only requires restricting transition
rules
▫ Intuitively appears OK
▫ In general, not safe

• We give a class of restrictions that is safe
▫ In a nutshell: restriction cannot depend on secret

data

Implementation

• IFC for Node.js

▫ No changes to Javascript runtime or Node.js

▫ Worker threads implement tasks

▫ Trusted main worker implements IFC checks

• Also in the paper:

▫ Connect formalism to Haskell IFC system

▫ Sketch a C implementation using our system
1, 𝐻, 33

𝐿 1

𝐻 2

𝐿

1

1, 𝐻, 33

𝐻

2

Trusted IFC Worker Task Workers

Conclusions

• Formalism for dynamic coarse-grained IFC for
many programming languages

▫ Little reliance on language details

• Combining operational semantics of two
languages as key mechanism to formalize our
system

▫ Allows security proofs to be once and for all

Questions?

