IFC Inside: Retrofitting
Languages with Dynamic
Information Flow Control

Stefan Heule, Deian Stefan, Edward Z. Yang,
John C. Mitchell, Alejandro Russo

Stanford University, Chalmers University

R —.
Motivating Example: Web Security

Create a password

Password strength: Weak ‘ ‘

» Website uses check strength (pw) from
some library

= Danger: the library could send the password to
bad.com

= Website author has little control over this

[Van Acker et al., CODASPY’15]

S —
Web Security Today

« Code written by many different parties
= Potentially mutually distrusting parties (website
code, utility/framework libraries, advertising
code, ...)
= Computing over sensitive data (passwords,
healthcare information, banking data)

.
Possible Solution: IFC

e Information flow control ...
= ... tracks where information flows
= ... allows policies to restrict flows of information

e In the example
» Label password as sensitive

= Restrict its dissemination (e.g. to arbitrary
webservers)

.
What kind of IFC?

» Various trade-offs in IFC systems

= Dynamic vs static
> What kind of labels
= Granularity at with information is tracked

» Sweetspot: dynamic, coarse-grained IFC

Coarse-grained IFC

» The program is split into computational units
(tasks)

= All data within one task has a single label

- Different computational units can communicate

ooo
A
1000

ooo

.
This Talk

 Given an existing programming language, how
can we add dynamic IFC?

- Minimal changes to language
= Simplifies implementation

« Formal security guarantees

Approach Overview

 Given a target language

= Any programming language for which we can control
external effects

 Define an IFC language
= Minimal calculus, only IFC features

« Combine target and IFC language
= Allow target language to call into IFC, and vice-versa

 Careful definition of the IFC language allows the
overall system to provide isolation, regardless of what
the target language does

S —
IFC language

- Tag tasks with security labels

= Labels form a lattice, and determine how data can
flow inside an application

- Example lattice |2
> Two labels H (high) and L (low) !
= Flow from H to L is not allowed L

S —
IFC language: labels

« Get and set the current label
= setLabel, getLabel

L

setLabel H
—

ooo
ooo

- Setting the label is only allowed to raise the label

 Can also compute on labels
o M,

IFC language: sandboxing

- Isolate an expression as a new task
» sandbox e

[sandbox e [[
s

1 1 2

0oo
0oo

- New task has separate state

Inter-task communication

» Tasks can send and receive messages

- Send message v to task i, protected by label [
» sendilv
= Can only send messages at or above current label

— L — ffl send2Hv — L — H

= = — = =

I_Il 1 '—'l 2 l_l 1 — 12
(1,H,v)

Inter-task communication

« Receiving either binds a message v and sender 1 in
e4, or execution continues in e, (if there is no
message)

= Messages that are above the current level are never
received

recvi,vin e else e,

H H L L
recv —> €1 recv —> | e

5 [v,1 , ; ;
(1,H,v) (1,H,v)

Formeal treatment

What is a programming language?

» Need a formal definition of a language
= Global store X
= Evaluation context E
» Expression syntax e, some expressions are values v
= Reduction relation —

- This is the target language

R ———
Example: Mini-ECMAScript

T-APP
v = Ax.e | true | false | a
e i==v|x|ee|if etheneelsee Ex[(Aze)v] = Es{v/z} €
lrefe|le|e:=¢e|fixe
E:=[]r|Ee|vE|if E then e else e T-IFTRUE
lref E|/E | E:=e|v:=E|fixE Ex [If €3] — & leq]
T-IFFALSE

Es | if false then e; else ea] — Ex [es]

T-REF T-DEREF
fresh(a) (a,v) € X
Es [ref v] = Exparsy (2] Ex [la] = Ex [V]
T-ASS

Exla=v] — Eslarsv] [V]

T-FIX

Ex [fix (Az.e)] = Ex [{fix (Az.e) /[x} €]

Notation

 Rules are standard, except we use € instead of
normal context E

T-1FFALSE

Es | if false then e; else e2] — Ex [e2]

o Obtain normal semantics with

Ese] = X, E [e]

- Later, we re-interpret what £ stands for

N
IFC language

« Also defined in terms of a special &€

[-SETLABEL
| C U

gL' [setLabel I'] — 5" [()]

Embedding [Matthews and Findler, POPL’07]

» Extend IFC and target language syntax
e u=---|11|e|

e n=-.-| e
« Re-interpret context and reduction relation

Ex [e] £ T; (S, Ele]r)i,
)

E5' [¢] £ X (2, Ble]n)i. -

Security Guarantees

 Non-interference:

» Intuitively: An attacker that can only see values up
to level | should not see a difference in behavior if
values at level I' > [are changed

— & D o B —
= = = = =

1 l 2 l 3 1 I 4
(1, H, 33) (1’ H, _1)

Security Guarantees

 Non-interference:

» Intuitively: An attacker that can only see values up
to level | should not see a difference in behavior if
values at level I' > [are changed

00

000C

000C

.| ooo
. loooc
.

Lt~

(1,H,33) (LH—1)

Erasure function

- Formally, we need an erasure function ¢
» Erases all data above [to =
= Program c; and c, are [-equivalent, c; =; c,, iff
e1(c1) = g(cz)

 For our system, ¢; erases the following:
= Any tasks with current label above I
= Any messages with label above [

Termination sensitive non-interference
(TSNI)

For all programs c,, c¢,, ¢; and labels [, such that
C1 ~% Co and 1 ="
then there exists c; such that

/ !/ /
c1 X Cy and Co =7 o

Theorem: Any target language combined with
our IFC language with round robin scheduling
satisfies TSNI.

Practicality
» Formalism requires separate heaps
Z; <21>€1>;ia<22762>;§ = ' = "
— B — 2

- An implementation might want to have one heap

L H

E; 2; <€1>§:;, <€2>§22, . o

ooo

000C

- Naive implementation is insecure
= Shared references, need additional checks

S —
Modifying the Combined Language

- Single heap only requires restricting transition
rules
s Intuitively appears OK
= In general, not safe

[-SEND
(cl! xX@Eh=06 Y=3[i",iv),0] v not ref

Evl[send i’ I v] — E24 ()]

« We give a class of restrictions that is safe

» In a nutshell: restriction cannot depend on secret
data

Implementation

 IFC for Node.js
= No changes to Javascript runtime or Node.js
= Worker threads implement tasks
» Trusted main worker implements IFC checks

s A~ Lin - Haper: | HE =
E nn E T*malism tg Haskell IFC syster.=
1 2| o T
> [Sketch g Cimplementation psing.our gysta=:
H 2 =
AIED (1,H,33) =
L { —

Trusted IFC Worker Task Workers

Conclusions

» Formalism for dynamic coarse-grained IFC for
many programming languages
= Little reliance on language details

- Combining operational semantics of two
languages as key mechanism to formalize our
system
= Allows security proofs to be once and for all

Thank you.

Questions?

