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Motivating Example: Web Security 

 

 

 

• Website uses check_strength(pw) from 

some library 

▫ Danger: the library could send the password to 
bad.com 

▫ Website author has little control over this 

 

[Van Acker et al., CODASPY’15] 

 



Web Security Today 

• Code written by many different parties 

▫ Potentially mutually distrusting parties (website 
code, utility/framework libraries, advertising 
code, …) 

▫ Computing over sensitive data (passwords, 
healthcare information, banking data) 

 

 

 

 

 

 



Possible Solution: IFC 

• Information flow control … 

▫ … tracks where information flows 

▫ … allows policies to restrict flows of information 

 

• In the example 

▫ Label password as sensitive 

▫ Restrict its dissemination (e.g. to arbitrary 
webservers) 



What kind of IFC? 

• Various trade-offs in IFC systems 

▫ Dynamic vs static 

▫ What kind of labels 

▫ Granularity at with information is tracked 

 

• Sweetspot: dynamic, coarse-grained IFC 

 



Coarse-grained IFC 

• The program is split into computational units 
(tasks) 

▫ All data within one task has a single label 

 

• Different computational units can communicate 

𝑙1 𝑙2 𝑙3 



This Talk 

• Given an existing programming language, how 
can we add dynamic IFC? 

 

• Minimal changes to language 

▫ Simplifies implementation 

 

• Formal security guarantees 



Approach Overview 

• Given a target language 
▫ Any programming language for which we can control 

external effects 
 

• Define an IFC language 
▫ Minimal calculus, only IFC features 

 
• Combine target and IFC language 

▫ Allow target language to call into IFC, and vice-versa 
 

• Careful definition of the IFC language allows the 
overall system to provide isolation, regardless of what 
the target language does 



IFC language 

• Tag tasks with security labels 

▫ Labels form a lattice, and determine how data can 
flow inside an application 

 

• Example lattice 

▫ Two labels H (high) and L (low) 

▫ Flow from H to L is not allowed 

H 

L 



IFC language: labels 

• Get and set the current label 

▫ setLabel, getLabel 

 

 

 

• Setting the label is only allowed to raise the label 

 

• Can also compute on labels 

▫ ⊑,⊓,⊔ 

 

𝐿 𝐻 
setLabel 𝑯 



IFC language: sandboxing 

• Isolate an expression as a new task 

▫ sandbox e 

 

 

 

 

• New task has separate state 

𝑙 

1 

𝑙 

e 

𝑙 

1 2 

sandbox e 



Inter-task communication 

• Tasks can send and receive messages 

 

• Send message v to task i, protected by label 𝒍 
▫ send i 𝒍 v 

▫ Can only send messages at or above current label 

𝐿 

1 

𝐻 

2 

1, 𝐻, 𝑣  

𝐿 

1 

𝐻 

2 

send 2 𝑯 v 



Inter-task communication 

• Receiving either binds a message v and sender i in 
𝒆𝟏, or execution continues in 𝒆𝟐 (if there is no 
message) 

▫ Messages that are above the current level are never 
received 

recv i,v in 𝒆𝟏 else 𝒆𝟐 

𝐫𝐞𝐜𝐯 

𝐿 

2 

1, 𝐻, 𝑣  

𝒆𝟐 

𝐿 

2 

𝐫𝐞𝐜𝐯 

𝐻 

2 

1, 𝐻, 𝑣  

𝒆𝟏 
[v,i] 

𝐻 

2 





What is a programming language? 

• Need a formal definition of a language 

▫ Global store 𝚺 

▫ Evaluation context 𝐄 

▫ Expression syntax 𝐞, some expressions are values 𝐯 

▫ Reduction relation → 

 

• This is the target language 



Example: Mini-ECMAScript 

 

 

 

 

 

 



Notation 

• Rules are standard, except we use ℰΣ instead of 
normal context E 

 

 

 

• Obtain normal semantics with 

 

 

• Later, we re-interpret what ℰ stands for 



IFC language 

• Also defined in terms of a special ℰ 



Embedding [Matthews and Findler, POPL’07] 

• Extend IFC and target language syntax 

 

 

 

• Re-interpret context and reduction relation 



Security Guarantees 

• Non-interference: 

▫ Intuitively: An attacker that can only see values up 
to level 𝑙 should not see a difference in behavior if 
values at level 𝑙′ > 𝑙 are changed 

 

𝐿 

1 

1, 𝐻, 33  

𝐻 

2 

𝐻 

3 

𝐿 

1 

1, 𝐻,−1  

𝐻 

4 
≈𝐿 
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Erasure function 

• Formally, we need an erasure function 𝜀𝑙 
▫ Erases all data above 𝑙 to ∎ 

▫ Program 𝑐1 and 𝑐2 are 𝑙-equivalent, 𝑐1 ≈𝑙 𝑐2, iff 
𝜀𝑙 𝑐1 = 𝜀𝑙(𝑐2) 

 

• For our system, 𝜀𝑙 erases the following: 

▫ Any tasks with current label above 𝑙 

▫ Any messages with label above 𝑙 

 

 



Termination sensitive non-interference 

(TSNI) 

For all programs 𝑐1, 𝑐2, 𝑐1
′  and labels 𝑙, such that 

 

then there exists 𝑐2
′  such that 

 

 

 

Theorem: Any target language combined with 
our IFC language with round robin scheduling 
satisfies TSNI. 



Practicality 

• Formalism requires separate heaps 

 

 

 

• An implementation might want to have one heap 

 

 

 

• Naïve implementation is insecure 

▫ Shared references, need additional checks 

𝐿 

1 

𝐻 

2 

𝐿 

1 

𝐻 

2 



Modifying the Combined Language 

• Single heap only requires restricting transition 
rules 
▫ Intuitively appears OK 
▫ In general, not safe 

 
 

 
 

• We give a class of restrictions that is safe 
▫ In a nutshell: restriction cannot depend on secret 

data 



Implementation 

• IFC for Node.js 

▫ No changes to Javascript runtime or Node.js 

▫ Worker threads implement tasks 

▫ Trusted main worker implements IFC checks 

 

• Also in the paper: 

▫ Connect formalism to Haskell IFC system 

▫ Sketch a C implementation using our system 
1, 𝐻, 33  

𝐿 1 

𝐻 2 

𝐿 

1 

1, 𝐻, 33  

𝐻 

2 

Trusted IFC Worker Task Workers 



Conclusions 

• Formalism for dynamic coarse-grained IFC for 
many programming languages 

▫ Little reliance on language details 

 

• Combining operational semantics of two 
languages as key mechanism to formalize our 
system 

▫ Allows security proofs to be once and for all 



Questions? 


