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Software security research spans a broad spectrum of approaches. At one end,
experts attempt to build systems that are secure by construction. At the other
end, people deploy faulty software and leave it to security practitioners to clean
up the mess. But cleaning up the mess isn’t working: experience shows that
post-hoc fixes can’t be deployed in time to prevent damage. Moreover, fixing
faulty software is an arms race, and the security community shows no signs of
winning it. Worse, the war is spreading to new fronts: even cars [5], televisions
and refrigerators [2] are now vulnerable to network attack.

How can we make software secure from the start? For most software to be
secure, the median programmer will have to produce secure code. Attempts to
achieve this by building a culture of good security practices have met with lim-
ited success. For example, despite attempts to educate them, web programmers
continue to misuse postMessage authentication [8]. Even Linux kernel developers
have committed vulnerable code three times in a row for a single bug [9].

Rather than focus on the abstract notion of security culture, we argue it is
more effective to change programmer behavior through APIs and programming
languages. Designing APIs and programming languages with security in mind
allows us to make common operations less error-prone, and, more importantly,
to restrict the damage that leads from inevitable mistakes. This requires secu-
rity mechanisms that, within the context of a single application, can protect
programmers from themselves as well as from each other. What should such
mechanisms look like?

To provide maximum benefit, any security mechanism must be objective: it
should provide concrete, formally specifiable, and (in the event of a design error)
falsifiable guarantees. Security mechanisms that evolve with systems tend not to
have this property. For example, enforcement of the same-origin policy is split
across multiple locations in Firefox—permission to load a resource is checked in a
completely different place from iframe DOM access. Without a suitable security
mechanism, the same-origin policy had to be expressed and enforced in a series
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of conditional statements. As software evolves with new features, extending such
a regime in a consistent way becomes a subjective exercise.

An equally important property for a security mechanism is to capture real-
world security concerns in a direct, declarative way. The issues people actually
care about tend to be high-level questions—e.g., Who can see this photograph?—
rather than low-level details—e.g., Does this image filter access the network?
Ideally, the security mechanism can capture such policy concerns in a manner
substantially divorced from the complex inner workings of an application.

One promising family of mechanisms is those based on decentralized infor-
mation flow control, or DIFC [7]. DIFC allows one to specify policy in terms of
who can read and write various data, and enforces these constraints throughout
an application or system regardless of its structure or the sequence of operations
performed. Specifying policy on data naturally captures high-level concerns in a
direct and declarative way, fulfilling one of our criteria. (Indeed, the generality
of DIFC is demonstrated by its ability to enforce policies uniformly across hard-
ware [14, 1], operating systems [3, 12], programming languages [7], distributed
systems [13, 6], and browsers [11, 10].) Moreover, DIFC guarantees can be for-
mally specified (for example, as non-interference), fulfilling the other criterion.

Historically, two weak points of DIFC have been, first, the discrepancy be-
tween formal models and actual implementations (notably, where covert channels
violate non-interference) and, second, limited adoption by non-experts. However,
we have made progress on both fronts in recent years. This talk will report on our
experience with Hails [4], a DIFC framework for building extensible web appli-
cations. Hails structures a web application as a collection of mutually distrustful
“apps” and database policies. Hails has been used to build production web sites
with minimal trusted code, making it one of the largest real-world examples
of DIFC. Moreover, the system has been used by novices, giving us invaluable
insight into the obstacles DIFC faces for adoption by average programmers.
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