
The Most Dangerous Code in the Browser

Stefan Heule1 Devon Rifkin1 Alejandro Russo∗2 Deian Stefan1

1Stanford University 2Chalmers University of Technology

ABSTRACT

Browser extensions are ubiquitous. Yet, in today’s

browsers, extensions are the most dangerous code to user

privacy. Extensions are third-party code, like web appli-

cations, but run with elevated privileges. Even worse, ex-

isting browser extension systems give users a false sense

of security by considering extensions to be more trust-

worthy than web applications. This is because the user

typically has to explicitly grant the extension a series of

permissions it requests, e.g., to access the current tab or

a particular website. Unfortunately, extensions develop-

ers do not request minimum privileges and users have

become desensitized to install-time warnings. Further-

more, permissions offered by popular browsers are very

broad and vague. For example, over 71% of the top-500

Chrome extensions can trivially leak the user’s data from

any site. In this paper, we argue for new extension system

design, based on mandatory access control, that protects

the user’s privacy from malicious extensions. A system

employing this design can enable a range of common ex-

tensions to be considered safe, i.e., they do not require

user permissions and can be ensured to not leak informa-

tion, while allowing the user to share information when

desired. Importantly, such a design can make permission

requests a rarity and thus more meaningful.

1 INTRODUCTION

The modern web browser is one of the most popular ap-

plication platforms. This is, in part, because building and

deploying web applications is remarkably easy and, in

other part, because using such applications is even eas-

ier: a user simply needs to type in a URL to run so-

phisticated applications, such as document editors, email

clients, or video players. Unlike venerable desktop appli-

cations, these apps run on many different devices without

imposing painstaking installation procedures or forcing

users to be concerned with security—e.g., the weather

app stealing their banking data or locally-stored photos.

As the web evolved to address different application de-

mands, it did so in a somewhat security-concious fash-

ion. In particular, when adding a new feature (e.g., off-

line caching [22]), web browsers have been careful to

ensure that the feature was confined to the browser, i.e.,

it did not unsafely expose underlying OS resources, and

that it could not be used to violate the same-origin pol-

icy (SOP) [5, 29]. The SOP roughly dictates that an app

∗Work conducted while at Stanford University.

from one origin can only read and write content from

the same origin. This ensures that one app cannot inter-

fere with another—it is the reason the weather app cannot

read data from the tab running the banking app.

Unfortunately, the web platform has some natural

limitations. Despite prioritizing “users over [app] au-

thors [27],” a user’s experience on the web is largely

dictated by the app author. For example, the web does

not provide users with a means for removing advertise-

ments served by an app. Similarly, the user cannot di-

rectly share content from one app with another app of

their choosing without the app author offering such a ser-

vice. Of course, it is unrealistic to demand that app au-

thors provide such features since they may be at odds

with the authors’ goals (e.g., to serve ads).

To address the limitations of the web platform, most

modern browsers provide users with extensions. Exten-

sions are typically used to modify and extend web appli-

cation behavior, content, and display (style). For exam-

ple, Adblock Plus [1], one of the most-widely used exten-

sions, modifies apps by blocking network requests and

hiding different page elements to provide ad-free brows-

ing. However, extensions can also be used to implement

completely new functionality. For instance, LastPass [2]

allows users to store and retrieve credentials for arbitrary

apps, in the cloud. And, in some cases, extensions even

modify and extend the browser itself.

Unlike web applications, which are bound by the SOP,

extensions can access the page contents of different-

origin apps, perform arbitrary network communication,

inspect and modify browser history, etc. Misusing such

privileged APIs is a serious security concern. In light

of this, browsers vendors have imposed various restric-

tions. For example, Chrome—which has the most com-

prehensive extension security system—makes it difficult

to install extensions that are not distributed through its of-

ficial Chrome Web Store (CWS), requires users to grant

extensions access to use privileged APIs, and employs

various mechanisms to prevent privilege-escalation at-

tacks [6, 8, 21].

Unfortunately, even Chrome’s extension system has

fundamental shortcomings. For example, Chrome’s at-

tacker model assumes that extensions are not malicious,

but rather that they are benign-but-buggy [6]. As a con-

sequence, Chrome’s security mechanisms were designed

to prevent attacks wherein malicious app pages try to ex-

ploit vulnerable extensions. However, the system does



not provide a way for protecting sensitive app data from

extensions—a malicious extension can easily leak data.

And the premise for placing more trust on extension

code over web app code is unfounded: both are pro-

vided by third-party developers, while the former runs

with elevated privileges. Unlike other privileged code in

the browser (e.g., plugins), these JavaScript-based exten-

sions are made available to users without a code review

process. It is of no surprise that roughly 5% of the users

visiting Google have at least one malicious extension in-

stalled, as showed by a recent study [7, 26].

Unfortunately, in the current extensions system, even

trustworthy but vulnerable extensions can be exploited

by malicious pages to leak sensitive data from cross-

origin apps [20]. While Chrome’s mechanisms limit an

attacker to abusing the privileges held by the vulnera-

ble extension, developer incentives have led many ex-

tensions request broad privileges. Similarly, many users

have become desensitized to the install-time warning ac-

companying these extensions [12]. For example, of the

500 most popular Chrome extensions, over 71% request

the privilege to “read and change all your data on the

websites you visit.” Since these extensions also retain

their privileges throughout lifetime of the extension, this

makes them especially attractive targets to attackers that

wish to steal user-sensitive data.

In today’s browsers, extensions are arguably the most

dangerous code to user privacy. Yet, this need not be the

case. This position paper argues for new extension sys-

tem designs that can address user privacy without giving

up on desired extension functionality.

What might such an extension system look like?

Given that apps handle sensitive data such as banking in-

formation and that extensions are written by potentially

untrusted third-party developers, it is clear that apps need

to be protected from extensions. At the same time, it is

important to keep protecting extensions from apps, as ex-

tensions may run with higher privileges. Mandatory ac-

cess control (MAC)-based confinement [19, 25] naturally

fits this scenario of mutually distrusting parties, where

apps and extensions can be protected from one another.

But, MAC alone is not enough. While MAC-based

confinement can prevent an extension from leaking sen-

sitive app data even after it has access to it, for many

extensions, this is overly restricting. For example, the

Google Dictionary extension [3] needs to read text from

the page and communicate with the network when look-

ing up a word—its functionality relies on the ability to

“leak” data. Hence, the extension system should allow

users to explicitly share app data with extensions, which

may further share the data with a remote server. Simi-

larly, it should provide robust APIs that common exten-

sions can use to operate on sensitive information without

being confined. Together with MAC-based confinement

this can alleviate the need for permissions altogether for

a broad range of safe extensions: many extensions only

read sensitive data and provide useful features to the user,

but never disseminate the data without user intent.

Of course, leveraging user actions to share data is not

possible in all cases; user-approved permission may still

be necessary. However, these permissions should be fine-

grained and content-specific. Since many extensions are

safe and do not rely on special permissions, it would

be possible for the extension system to give users more

meaningful messages and warn them appropriately about

installing dangerous extensions.

In the rest of the paper we give a brief overview of

Chrome’s extension system and its limitations (§2). We

then expand on the design goals of an extensions system

that addresses Chrome’s limitations (§3) and describe a

preliminary system design that satisfies these goals (§4).

Finally, we conclude (§5).

2 CHROME’S EXTENSION MODEL

In this paper, we focus on the Chrome extension model,

whose security system is widely regarded as being more

advanced than those implemented in other browsers [8,

16]. More specifically, we focus on JavaScript-based ex-

tensions; we do not consider plugins, which can addition-

ally execute native code.1 Below we describe the exten-

sion system’s security model, evaluate the use of permis-

sions in this ecosystem, and highlight its key limitations.

2.1 Security Model

The Chrome attacker model assumes that extensions

are trustworthy, but vulnerable to attacks carried out by

apps [6]. Hence, Chrome’s extension security system is

designed to protect extensions from apps. Chrome re-

quires developers to privilege-separate [21] extensions

into a content script and a core extension. Content scripts

interact directly with web pages (e.g., by reading the

page’s cookies or modifying its DOM),2 but do not have

access to any privileged APIs. To perform privileged op-

erations, content scripts use message-passing to commu-

nicate with core extension scripts, which have access to

the privileged APIs needed to perform the actions.

To mitigate the impact of exploits that compromise

vulnerable content scripts, in addition to privilege sep-

aration, Chrome also follows the principle of least privi-

lege [23]. Specifically, Chrome implements a permission

system that can be used to limit the privileges available

to core script extensions. By limiting the privileges of an

1Plugins make up only a small fraction of the space, require a code

review before being put on the CWS, and are widely-accepted to be

dangerous. We do not discuss them further.
2Actually, Chrome employs isolated worlds [6] to separate the

JavaScript heaps of the content script and page. This prevents attacks

where a malicious page redefines functions (e.g., getElementById)

that are commonly used by extensions.



extension, the damages that can be caused from exploits

is also more limited.

To this end, Chrome requires extension authors to stat-

ically declare, in a manifest, what kind of permissions

the extension requires. In turn, the user must approve

these permissions when installing the extension. Since

the compromise of an overly-privileged extension can

cause serious harm (e.g., leaking user’s banking infor-

mation), Chrome encourages developers to only request

minimal privileges. Below, we report the results of our

study evaluating permission usage in Chrome extensions.

2.2 Permission Study

We surveyed the permissions used by the 500 most pop-

ular Chrome extensions [14] by inspecting their mani-

fest files.3 Most extensions are widely deployed: the

most popular extension is used by more than 10 million

users; the 500th extension is used by more than 76,000

users. In Table 1, we list the permissions most often re-

quested. The most widely required permission is tabs,

which among other abilities, allows an extension to re-

trieve URLs as they are navigated to. More concerning

is the prevalence of permissions such as http://*/*,

https://*/* and <all urls>, which allow an ex-

tension to make requests to any origin (over HTTP,

HTTPS, or both, respectively). Upon installing any ex-

tension that requires one of these permissions (or several

other similarly high-privilege permissions), the user is

warned that the extension can “read and change all [their]

data on the websites [they] visit.” These permissions can

easily be used maliciously, for example, to retrieve a sen-

sitive webpage (using the cookies stored in the browser)

and forward its contents to the attacker’s own server. De-

spite this danger, permissions triggering this warning are

widely used. In our study, we found more than 71% of

the top 500 extensions display this “read and change. . . ”

warning at installation-time. For users installing popular

Chrome extensions, the norm is to allow for such high

privilege requests. In fact, the more popular extensions

are more likely to show this warning: 74% of the top

250 extensions display this warning, 82% of the top 100,

and 88% of the top 50. We did not investigate how many

of these extensions actually needed or exercised their re-

quested permissions.

2.3 Pitfalls

Chrome assumes extensions to be benign-but-buggy [6].

Unfortunately, this trust in extensions is amiss, as ex-

tensions are written by potentially untrusted developers.

For example, Kapravelos et al. [18] report on 140 ma-

licious extension in the CWS. While taking malicious

extensions out of the CWS is an appropriate response,

this weak-attacker model has unfortunately led to the de-

3The manifests in this study were fetched on April 20, 2015.

Permission Count

tabs 75.6%

storage 38.4%

http://*/* 37.8%

https://*/* 36.4%

contextMenus 36.0%

webRequest 32.2%

notifications 30.4%

Permission Count

webRequestBlocking 25.6%

cookies 24.6%

unlimitedStorage 20.4%

<all_urls> 19.2%

webNavigation 16.6%

management 14.6%

history 10.4%

Table 1: The 14 most prevalent permissions as required by the

top 500 Chrome extensions. A single extension may request

any number of permissions. A full list explaining what each

permission grants is available in [13].

sign of security mechanisms that do not explicitly pro-

tect web app data. This is particularly disconcerting

because, as our study shows, most extensions can ac-

cess highly sensitive data and communicate with the

network—vulnerabilities in such extensions can be used

to leak user data [9, 20]. A single compromised or mali-

cious extension is enough to put the users privacy at risk.

Chrome provides a permission system that is meant

to implement least privilege. Unfortunately, the expla-

nations accompanying the permissions are broad and

content-independent. Moreover, they do not convey to

the user why such permissions are justified. Permissions

must be accepted at install time, before a user has ac-

quired context from using the extension.4 Because the

vast majority of extensions require many broad permis-

sions, users have grown desensitized and accustomed to

accepting most permission requests.

The other pitfall of the extension system is that it

makes it difficult even for security conscious extension

developers to request minimal privileges. The permis-

sions are coarse grained and Chrome does not provide

a way for requesting finer-grained access. Even worse,

developers are incentivized to ask for more permission

than they actually need. For example, if an extension up-

date requires additional permissions (e.g., because of a

new feature in the extension), Chrome automatically dis-

ables the extension until the user approves the new per-

missions. Since users get irritated by such prompts, de-

velopers often ask for more permissions than necessary

up front thereby eliminating the risk of removal.

3 DESIGN GOALS

In this section, we outline a series of design goals that

a modern browser extension system should strive for in

order to protect user privacy and avoid Chrome’s pitfalls.

1. Handle mutually distrusting code Extensions and

web apps may be written by mutually distrusting parties.

In addition to protecting extensions from untrusted app

4Chrome more recently added optional permissions, which, while

still declared statically, only demand the user’s approval at run-time,

e.g., right before the extension uses the privileged API. Unfortunately

optional permission warnings fall victim to the coarseness of the system

and often ask for far more expansive abilities than required.



code, an extension system should provide mechanisms

for protecting sensitive user (app) data from untrusted ex-

tensions without giving up on functionality. We assume a

relatively strong attacker model where an extension exe-

cutes attacker-provided code in attempt to leak user data

via the extension system APIs. We consider leaks via

covert channels to be out of scope.

2. Leverage user intent An extensions system should

leverage user intent for security decisions. The system

should provide APIs and trusted UIs for making secu-

rity decisions part of the user’s work-flow. For example,

browsers can use user intent to make sharing of app data

with an extension explicit via a sharing-menu API. A

challenge with this goal is designing APIs and UIs that

are not susceptible to confused deputy attacks [17].

3. Provide a meaningful permission system Most

common extensions should not need to request user per-

mission to perform their tasks. In the rare case that

an extension requires to leak sensitive data without ex-

plicit user intent, the permissions available should be

fine-grained and content-specific. Furthermore, the sys-

tem should provide the user with specific-enough infor-

mation necessary to make an educated decision. This

could happen, for instance, by asking for permission at

runtime when the leaked content can be shown and the

user has an idea of what the extension is about to do (in

contrast to install-time permissions).

4. Incentivize safety The incentives of developers

and the security model should align such that most com-

mon extensions are safe, i.e., they run without requir-

ing user approval for permissions. The extension sys-

tem should reward developers that implement these and

other least-privileged extensions and penalize overly-

privileged ones. For example, extensions that require

permissions should require a security audit before being

allowed to be installed. This ensures that APIs that lever-

age user intent for disclosing data are prioritized and that

security warnings remain meaningful.

4 PRELIMINARY DESIGN

In this section we propose a new extension system de-

signed to meet the aforementioned goals. We observe

that, for an extension to be useful, it typically needs to

have access to sensitive data such as the current app’s

URL or different parts of the page. However, if this in-

formation cannot be arbitrarily disseminated (within or

external to the confines of the browser), then the user’s

privacy is not at risk: it is entirely safe for an extension

to read sensitive data as long as it does not write it to an

end-point that is not permitted by the SOP.

This idea of allowing code to compute on sensitive

data, but restrict where it can subsequently write it, is

endemic to MAC-based confinement systems (e.g., HiS-

tar [28] and COWL [25]). In such systems, the sensitivity

of information is tracked throughout the system and the

security mechanism ensures that leaks due to data- and

control-flow cannot occur.

We propose to extend the Chrome architecture to

use a coarse-grained confinement system, similar to

COWL [25]. As in Chrome, to achieve isolation and pro-

tect an extension from an untrusted app, every app and

extension runs in a separate execution context. However,

and unlike Chrome, our proposed extension system addi-

tionally protects app user data from an untrusted exten-

sion by ensuring that whenever the extension accesses

sensitive data, its context gets “tainted” with the app’s

origin—we consider any data in the page to be sensitive.

In turn, the origins with which the extension can sub-

sequently communicate with is restricted by this taint—

e.g., the extension cannot perform arbitrary network re-

quests once it has read sensitive data.

With confinement, extensions that only read sensitive

information can be implemented securely and without

requiring any permissions. For instance, consider the

Chrome extension Google Mail Checker [15], which dis-

plays an icon in the browser with the number of un-

read emails in Gmail. Confinement allows this exten-

sions to connect to Gmail using the users credentials.

Once it does so, however, the execution context is tainted

with mail.google.com and thus cannot communi-

cate with, for instance, evil.com. However, the exten-

sion can safely do its job and show an unread count to the

user. We remark that such a system satisfies our goal of

protecting user data against malicious extensions—even

if malicious, the extension cannot leak the user’s emails.

Of course, not all extensions are this simple, and a

real extension system must provide extension developers

with APIs to carry out common tasks. Below we describe

some of these APIs, and in particular focus on APIs that

make the confinement system more flexible or address

our design goals directly.

Page access Some extensions read and modify page con-

tents. Our system provides content script extensions with

APIs for reading and writing the DOM of a page, much

like COWL’s labeled DOM workers [25]. Importantly,

when accessing the DOM of a page, the content script

is tainted with the origin of the page and its function-

ality is subsequently restricted to ensure that the read

information is not leaked. (Of course, an extension

can create such labeled content scripts at run time, to

avoid over-tainting [25].) To ensure that extensions can-

not leak through the page’s DOM, we argue that exten-

sions should instead write to a shadow-copy of the page

DOM—any content loading as a result of modifying the

shadow runs with the privilege of the extension and not

the page. This ensures that the extension’s changes to the

page are isolated from that of the page, while giving the

appearance of a single layout.



Explicit sharing Of course, some functionality requires

sensitive data to be “leaked.” For instance, Evernote Web

Clipper [10] offers the functionality to save part of the

page (e.g., the current selection) to evernote.com.

Sharing page contents with arbitrary origins violates

confinement—the page may contain sensitive informa-

tion (e.g., a bank statement).

However, in some cases, the user may wish specific

information to be sent to evernote.com, e.g., to save

a recipe the user saw online. Confinement systems typ-

ically require declassification to allow such controlled

leaks. However, extensions cannot be trusted to declas-

sify data on their own. Our key insight is that informa-

tion sharing typically follows a user action (e.g., clicking

a “Save to Evernote” button), and therefore the intent of

the user can be used to declassify the data. Concretely,

we propose a sharing API that extensions can use to re-

ceived data from the user and trusted browser UIs that

users can employ to share specific content with these ex-

tensions, e.g., by means of a “Share with. . . ” context

menu entry. With this API, extensions like Evernote or

Google Dictionary can be implemented without requir-

ing specific declassification permissions. Of course, they

can only leak data the user shares explicitly.

Encrypted sharing Since credentials are usually treated

with more care than other data, our sharing API does not

allow extensions to receive credentials without restric-

tions. Concretely, when sharing credentials, our sharing

API provides extensions with labeled blobs [25], which

the extension can only observe by tainting its context.

However, it is often useful to allow extensions to syn-

chronize and store such sensitive data. For this, we pro-

pose an API that takes a blob labeled with a.com and

returns an unlabeled encrypted blob. This directly allows

the extension to send the encrypted data to the cloud and

synchronize it to another devices. There, a similar ex-

tension can use our API to decrypt the data to a.com-

labeled credentials, which can then be used to, for ex-

ample, fill in a a.com login form. This API makes our

MAC system more flexible and directly allows the im-

plementation of an extension to manage user passwords

similar to LastPass. Unlike LasPass, however, the en-

cryption algorithms and parameters are provided by the

browser, only relying on the user to supply a master key.

Privileged content sharing Some extensions need to

read content from the page and communicate with the

network without user interaction. For example, the Red-

dit Enhancement Suite (RES) [4] fetches images that are

linked in a post as to display them inline. Unfortunately,

the page access API is insufficient when implementing

such extensions since the code cannot communicate with

arbitrary domains, as to fetch images, once it traverses

the DOM to find the image links. Instead, we provide

APIs that can be used to retrieve content from the page

without imposing confinement restrictions. In particu-

lar, extension developers can request to access different

kinds of elements on the page, e.g., URLs, or the cur-

rent origin, etc. Our extension system would, in turn,

ask the user to consent to the request at run time when

the extension requests the data, applying the lessons and

techniques of [11] to avoid desensitization (e.g., use dif-

ferent icons and colors to signify the severity of the

request). Unlike Chrome’s permissions requests, we

envision providing users with content-specific choices

(e.g., “RES wishes to see all the links on this page.”),

which they can also deny while continuing to use the

extension—extensions should gracefully handle excep-

tions from these APIs or risk removal from the platform.

Besides content-specific messages, other HCI techniques

would be employed to make permissions more meaning-

ful and to refrain users from blindly consenting to secu-

rity prompts [24].

We remark that other APIs (e.g., a network API or

declarative CSS replacement API) share many similari-

ties with the above: they are fine-grained, content-driven,

and abide by MAC. More interestingly, we note that our

MAC-based approach encourages safe extensions, i.e.,

extensions that do not rely on privileges and raise alarms,

but, rather, rely on sharing menu- and crypto-APIs to get

user data. But in cases where permissions are required,

our system presents security decisions at run-time and

in terms of data—by reasoning about the content being

disclosed users can make more educated decisions.

5 SUMMARY

We identify extensions as some of the most dangerous

code in the browser and show the pitfalls of modern ex-

tension security systems. For this reason, new extension

security models that protect user privacy are in need. We

outlined the goals of such as system and proposed a pre-

liminary system design to this end. Our proposal relies

on MAC-based confinement to prevent sensitive informa-

tion from being arbitrarily shared. We also outlined sev-

eral APIs that can be used to safely share data and make

such a system flexible enough to handle a large class of

common extensions, while keeping developer incentives

aligned with security. We hope this encourages browser

vendors to rethink extensibility.

ACKNOWLEDGEMENTS

We thank James Mickens, Petr Marchenko, Adrienne

Porter Felt, and the anonymous reviewers for their help-

ful comments. This work was funded by DARPA

CRASH under contract #N66001-10-2-4088, by multi-

ple gifts from Google, by a gift from Mozilla, by the

Swedish research agency VR and the Barbro Oshers Pro

Suecia Foundation.



REFERENCES

[1] Adblock Plus – surf the web without annoying ads!

https://adblockplus.org/, 2012. Visited

April 21, 2015.

[2] LastPass password manager. https://

lastpass.com/, 2012. Visited April 21,

2015.

[3] Google dictionary. https://chrome.

google.com/webstore/detail/

google-dictionary-by-goog/

mgijmajocgfcbeboacabfgobmjgjcoja,

2015. Visited April 21, 2015.

[4] Reddit enhancement suite. http://

redditenhancementsuite.com/, 2015.

Visited April 21, 2015.

[5] Adam Barth. The web origin concept. https:/

/tools.ietf.org/html/rfc6454, 2011.

Visited April 21, 2015.

[6] Adam Barth, Adrienne Porter Felt, Prateek Saxena,

and Aaron Boodman. Protecting browsers from ex-

tension vulnerabilities. In NDSS, 2010.

[7] BBC. Google purges bad extensions from

Chrome. http://www.bbc.com/news/technology-

32206511, 2015. Visited April 21, 2015.

[8] Nicholas Carlini, Adrienne Porter Felt, and David

Wagner. An evaluation of the google chrome ex-

tension security architecture. In Security. USENIX,

2012.

[9] Mohan Dhawan and Vinod Ganapathy. Analyzing

information flow in JavaScript-based browser ex-

tensions. In ACSAC, 2009.

[10] Evernote. Evernote web clipper. https:/

/chrome.google.com/webstore/

detail/evernote-web-clipper/

pioclpoplcdbaefihamjohnefbikjilc,

2015. Visited April 21, 2015.

[11] Adrienne Porter Felt, Serge Egelman, Matthew

Finifter, Devdatta Akhawe, David Wagner, et al.

How to ask for permission. In HotSec. USENIX,

2012.

[12] Adrienne Porter Felt, Kate Greenwood, and David

Wagner. The effectiveness of application permis-

sions. In WebApps’11. USENIX, 2011.

[13] Google. Declare permissions. https://

developer.chrome.com/extensions/

declare permissions, 2014. Visited April

21, 2015.

[14] Google. Chrome Web Store - Ex-

tensions. https://chrome.

google.com/webstore/category/

extensions? sort=1, 2015. Visited April 21,

2015.

[15] Google. Google mail checker. https:/

/chrome.google.com/webstore/

detail/google-mail-checker/

mihcahmgecmbnbcchbopgniflfhgnkff,

2015. Visited April 21, 2015.

[16] Arjun Guha, Matthew Fredrikson, Benjamin

Livshits, and Nikhil Swamy. Verified security for

browser extensions. In Security and Privacy. IEEE,

2011.

[17] Norm Hardy. The confused deputy:(or why capa-

bilities might have been invented). ACM SIGOPS

OS Review, 22(4):36–38, 1988.

[18] Alexandros Kapravelos, Chris Grier, Neha Chachra,

Christopher Kruegel, Giovanni Vigna, and Vern

Paxson. Hulk: Eliciting malicious behavior in

browser extensions. In Security. USENIX, 2014.

[19] Butler W. Lampson. A note on the confine-

ment problem. Communications of the ACM,

16(10):613–615, 1973.

[20] Petr Marchenko, Ulfar Erlingsson, and Brad Karp.

Keeping sensitive data in browsers safe with Script-

Police. Technical Report RN/13/02, UCL, January

2013.

[21] Niels Provos, Markus Friedl, and Peter Honey-

man. Preventing privilege escalation. In Security.

USENIX, 2003.

[22] Alex Russell and Jungkee Song. Service work-

ers. http://www.w3.org/TR/service-

workers/, 2014. Visited April 21, 2015.

[23] Jerome H Saltzer and Michael D Schroeder. The

protection of information in computer systems.

IEEE, 63(9), 1975.

[24] S. W. Smith. Humans in the loop: Human-

computer interaction and security. IEEE Security

and Privacy, 1(3), May 2003.

[25] Deian Stefan, Edward Z. Yang, Petr Marchenko,

Alejandro Russo, Dave Herman, Brad Karp, and

David Mazières. Protecting users by confining

JavaScript with COWL. In OSDI. USENIX, 2014.



[26] Kurt Thomas, Elie Bursztein, Chris Grierand Grant

Ho, Nav Jagpal, Alexandros Kapravelos, Damon

McCoy, Antonio Nappa, Vern Paxson, Paul Pearce,

Niels Provos, and Moheeb Abu Rajab. Ad injection

at scale: Assessing deceptive advertisement modifi-

cations. In Security and Privacy. IEEE, 2015. To

appear.

[27] Anne van Kesteren and Maciej Stachowiak. HTML

design principles. http://www.w3.org/TR/

html-design-principles, 2007. Visited

April 21, 2015.

[28] Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie

Kohler, and David Mazières. Making information

flow explicit in HiStar. In OSDI. USENIX, 2006.

[29] Michal Zelwski. Browser security handbook,

part 2. http://code.google.com/p/

browsersec/wiki/Part2, 2009. Visited

April 21, 2015.


	Introduction
	Chrome's Extension Model
	Security Model
	Permission Study
	Pitfalls

	Design Goals
	Preliminary Design
	Summary

