The Most Dangerous Code in
the Browser

Stefan Heule, Devon Rifkin, Alejandro Russo,
Deian Stefan

Stanford University, Chalmers University of Technology

Web Browsers Today

One of the most popular application platforms
— Easy to deploy and access
— Almost anything available as a web app

— Including very sensitive content (e.g., banking,
email, passwords, health care)

Security built in

— E.g., website cannot steal locally stored photos
— Achieved through, e.g., same-origin policy (SOP)
— User does not need to worry about this

Browser Extensions

Users want more functionality

— Customize websites: content, behavior and display
— New functionality for websites

— Change browser

Browsers provide extension systems

Extension Security

Extensions are meant to interact with websites
— Challenging for user privacy and security

Firefox @&
— Extensions are powerful
* Can change almost any aspect (and run native code)
— Can be installed from anywhere
— Web store: static analysis and human review

4+ Add to Firefox

@ Chrome Extension Security

Split into extensions and plugins

Plugins: native code
— Flash, Java, PDF, Silverlight
— Require manual review

Extensions: JavaScript based
— Vast majority are in this category

— Extension can only be installed from Chrome Web
Store

Chrome Extension Architecture

Isolated worlds

|

Content W

[History}

Script J

(Extension}

L Core

Process Boundary

Chrome Threat Model

Extensions are benign-but-buggy
— Protect extensions from websites

Principle of least privilege
— Extensions ask for permissions
— Typically asked for at install time

Permissions of Top 500 Extensions

Permission Count Permission Count
tabs 75.6% *webRequestBlocking 25.6%
*storage 384% *cookies 24.6%
http://*/* 37.8% *unlimitedStorage 20.4%
https://x/* 36.4% <all_urls> 19.2%
*contextMenus 36.0% webNavigation 16.6%
*webRequest 32.2% management 14.6%
*notifications 30.4% history 10.4%

Confirm New Extension Confirm New Extension

Add "Google Mail Checker"?

Add "WhatsApp Web Notifier"?
It can: - {}
- ’ 3

Read and change your data on all
google.com sites * Read and change all your data on the

websites you wisit
* Read your browsing history y

Add | Cancel Add

| Cancel [I N |

71.6% can “Read and modify all your data on all
websites you visit”

Percentage

1.2

0.8

o
o)

0.4

0.2

Permissions are Meaningless

51 101 151 201 251 301 451

n / Extension number

351 401

10000000

1000000

100000
e
g

10000 2
o
5
Q0
£
=}
2

1000

100

10

= Percentage of top
n extensions with
'Read and change
all your data on
the websites you
visit'

== Percentage of top
n extensions with
access to all
HTTPS data

= Number of users

Problems

Permissions are broad and vague; without context
Users desensitized to permission requests

Incentives for developers to asks for too many
permissions
— Adding permissions later requires user action

Attacker model assumes extensions to be benign

Attacks in the Wild

Google recently removed ~200 malicious
extensions [Oakland’15]

— 5% of unique IPs accessing Google had at least one
malicious extension

— Some injected ads, others steal personal
information

Popular extension developers get contacted to
sell extension

— And then update with malicious code

New Extension System: Goals

1. Handle mutually distrusting code
— Extensions are protected from websites

— Sensitive (website) user data is protected from
extensions

Attacker executes arbitrary extension to leak user data
2. Provide a meaningful permission system
— Safe behavior should not require permission

— Permissions should be fine-grained and content-
specific

3. Incentivize safety
— Many extensions should not require permissions

Preliminary Design

Reading sensitive data is safe
— if not disseminated arbitrarily

Mandatory access control (MAC) confinement
— Track sensitivity of information through application

Proposal: use coarse-grained confinement
system like COWL [OSDI’14]

Example: Google Mail ChecRer

x ! [EJ google - Google Search x

o7soure ISE. = ‘

Extension reads unread count from gmail
— Gets tainted with mail.google.com
— No further communication with evil.com allowed

Not all extensions are this simple
— Need richer extension APIs

Explicit Sharing

Some users want to leak information
— Save snippet to Evernote @&
— Share webpage to Pintrest (@

Forbidden according to MAC
— Corresponds to information declassification

Leverage user intent with a sharing API
— Trusted Ul, e.g. “Share with ...” context menu

Encrypted Sharing

System allows labeled values
— Can freely be passed, only tainted when inspected

Encryption API takes labeled value, returns
unlabeled encrypted value

— Can now be freely shared, e.g. sync to other device

Secure LastPass-style password manager

— Cloud only sees encrypted values, user controls master
key

— When decrypted, passwords cannot leave browser due
to MAC

More APlIs

Declarative CSS API
— Change the display of a website

Networking API
— E.g., to block undesired requests (AdBlock)

DOM access
— Isolate extension from website using shadow DOM

Safe by Default

When a large class of extensions can be written
safely without permissions, warnings can
become meaningful again

[Privacy error \
+ = O [hps:/tv.eurosport.com

Confirm New Extension * a

Add "WhatsApp Web Notifier"?
It can: .}

+ Read and change all your data on the Your connection is not private
visit

Read a
websites you

=
n

Attackers might be trying to steal your information from tv.eurosport.com
Cancel Add (for example, passwords, messages, or credit cards).
J)

Advance d Back to safety

Conclusion

Extensions most dangerous to user privacy
— This need not be!

Strong guarantees of MAC-based confinement
system allow many extensions to be safe

Meaningful permissions/warnings otherwise
— Fine-grained and content specific, at runtime

Thankyou

Questions?

