
Stefan Heule, Devon Rifkin, Alejandro Russo,
Deian Stefan

Stanford University, Chalmers University of Technology

• One of the most popular application platforms
– Easy to deploy and access

– Almost anything available as a web app

– Including very sensitive content (e.g., banking,
email, passwords, health care)

• Security built in
– E.g., website cannot steal locally stored photos

– Achieved through, e.g., same-origin policy (SOP)

– User does not need to worry about this

• Users want more functionality

– Customize websites: content, behavior and display

– New functionality for websites

– Change browser

• Browsers provide extension systems

• Extensions are meant to interact with websites

– Challenging for user privacy and security

• Firefox

– Extensions are powerful

• Can change almost any aspect (and run native code)

– Can be installed from anywhere

– Web store: static analysis and human review

• Split into extensions and plugins

• Plugins: native code
– Flash, Java, PDF, Silverlight

– Require manual review

• Extensions: JavaScript based
– Vast majority are in this category

– Extension can only be installed from Chrome Web
Store

Content
Script

Extension
Core

History Tabs DOM

P
ro

ce
ss

 B
o

u
n

d
ar

y

Isolated worlds

• Extensions are benign-but-buggy

– Protect extensions from websites

• Principle of least privilege

– Extensions ask for permissions

– Typically asked for at install time

• 71.6% can “Read and modify all your data on all
websites you visit”

10

100

1000

10000

100000

1000000

10000000

0

0.2

0.4

0.6

0.8

1

1.2

1 51 101 151 201 251 301 351 401 451

N
u

m
b

e
r

o
f

u
se

rs

P
e

rc
e

n
ta

ge

n / Extension number

Percentage of top
n extensions with
'Read and change
all your data on
the websites you
visit'

Percentage of top
n extensions with
access to all
HTTPS data

Number of users

• Permissions are broad and vague; without context

• Users desensitized to permission requests

• Incentives for developers to asks for too many
permissions

– Adding permissions later requires user action

• Attacker model assumes extensions to be benign

• Google recently removed ~200 malicious
extensions [Oakland’15]
– 5% of unique IPs accessing Google had at least one

malicious extension

– Some injected ads, others steal personal
information

• Popular extension developers get contacted to
sell extension
– And then update with malicious code

1. Handle mutually distrusting code
– Extensions are protected from websites

– Sensitive (website) user data is protected from
extensions

Attacker executes arbitrary extension to leak user data

2. Provide a meaningful permission system
– Safe behavior should not require permission

– Permissions should be fine-grained and content-
specific

3. Incentivize safety
– Many extensions should not require permissions

• Reading sensitive data is safe

– if not disseminated arbitrarily

•
Mandatory access control (MAC) confinement

– Track sensitivity of information through application

• Proposal: use coarse-grained confinement
system like COWL [OSDI’14]

• Extension reads unread count from gmail

– Gets tainted with mail.google.com

– No further communication with evil.com allowed

• Not all extensions are this simple

– Need richer extension APIs

• Some users want to leak information
– Save snippet to Evernote

– Share webpage to Pintrest

• Forbidden according to MAC
– Corresponds to information declassification

• Leverage user intent with a sharing API
– Trusted UI, e.g. “Share with …” context menu

• System allows labeled values
– Can freely be passed, only tainted when inspected

• Encryption API takes labeled value, returns

unlabeled encrypted value
– Can now be freely shared, e.g. sync to other device

• Secure LastPass-style password manager

– Cloud only sees encrypted values, user controls master
key

– When decrypted, passwords cannot leave browser due
to MAC

• Declarative CSS API

– Change the display of a website

•
Networking API

– E.g., to block undesired requests (AdBlock)

• DOM access

– Isolate extension from website using shadow DOM

• When a large class of extensions can be written
safely without permissions, warnings can
become meaningful again

• Extensions most dangerous to user privacy

– This need not be!

• Strong guarantees of MAC-based confinement
system allow many extensions to be safe

• Meaningful permissions/warnings otherwise

– Fine-grained and content specific, at runtime

Thank you

:-)

