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Web Browsers Today

One of the most popular application platforms
— Easy to deploy and access
— Almost anything available as a web app

— Including very sensitive content (e.g., banking,
email, passwords, health care)

Security built in

— E.g., website cannot steal locally stored photos
— Achieved through, e.g., same-origin policy (SOP)
— User does not need to worry about this



Browser Extensions

Users want more functionality

— Customize websites: content, behavior and display
— New functionality for websites

— Change browser

Browsers provide extension systems



Extension Security

Extensions are meant to interact with websites
— Challenging for user privacy and security

Firefox @&
— Extensions are powerful
* Can change almost any aspect (and run native code)
— Can be installed from anywhere
— Web store: static analysis and human review

4+ Add to Firefox




@ Chrome Extension Security

Split into extensions and plugins

Plugins: native code
— Flash, Java, PDF, Silverlight
— Require manual review

Extensions: JavaScript based
— Vast majority are in this category

— Extension can only be installed from Chrome Web
Store



Chrome Extension Architecture
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Chrome Threat Model

Extensions are benign-but-buggy
— Protect extensions from websites

Principle of least privilege
— Extensions ask for permissions
— Typically asked for at install time



Permissions of Top 500 Extensions

Permission Count  Permission Count
tabs 75.6%  *webRequestBlocking 25.6%
*storage 384%  *cookies 24.6%
http://*/* 37.8%  *unlimitedStorage 20.4%
https://x/* 36.4%  <all_urls> 19.2%
*contextMenus 36.0%  webNavigation 16.6%
*webRequest 32.2% management 14.6%
*notifications 30.4% history 10.4%
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71.6% can “Read and modify all your data on all
websites you visit”
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Problems

Permissions are broad and vague; without context
Users desensitized to permission requests

Incentives for developers to asks for too many
permissions
— Adding permissions later requires user action

Attacker model assumes extensions to be benign



Attacks in the Wild

Google recently removed ~200 malicious
extensions [ Oakland’15 ]

— 5% of unique IPs accessing Google had at least one
malicious extension

— Some injected ads, others steal personal
information

Popular extension developers get contacted to
sell extension

— And then update with malicious code



New Extension System: Goals

1. Handle mutually distrusting code
— Extensions are protected from websites

— Sensitive (website) user data is protected from
extensions

Attacker executes arbitrary extension to leak user data
2. Provide a meaningful permission system
— Safe behavior should not require permission

— Permissions should be fine-grained and content-
specific

3. Incentivize safety
— Many extensions should not require permissions



Preliminary Design

Reading sensitive data is safe
— if not disseminated arbitrarily

Mandatory access control (MAC) confinement
— Track sensitivity of information through application

Proposal: use coarse-grained confinement
system like COWL [OSDI’14]



Example: Google Mail ChecRer

x ! [EJ google - Google Search x

o7soure ISE. = ‘

Extension reads unread count from gmail
— Gets tainted with mail.google.com
— No further communication with evil.com allowed

Not all extensions are this simple
— Need richer extension APIs



Explicit Sharing

Some users want to leak information
— Save snippet to Evernote @&
— Share webpage to Pintrest (@

Forbidden according to MAC
— Corresponds to information declassification

Leverage user intent with a sharing API
— Trusted Ul, e.g. “Share with ...” context menu



Encrypted Sharing

System allows labeled values
— Can freely be passed, only tainted when inspected

Encryption API takes labeled value, returns
unlabeled encrypted value

— Can now be freely shared, e.g. sync to other device

Secure LastPass-style password manager

— Cloud only sees encrypted values, user controls master
key

— When decrypted, passwords cannot leave browser due
to MAC



More APlIs

Declarative CSS API
— Change the display of a website

Networking API
— E.g., to block undesired requests (AdBlock)

DOM access
— Isolate extension from website using shadow DOM



Safe by Default

When a large class of extensions can be written
safely without permissions, warnings can
become meaningful again
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Conclusion

Extensions most dangerous to user privacy
— This need not be!

Strong guarantees of MAC-based confinement
system allow many extensions to be safe

Meaningful permissions/warnings otherwise
— Fine-grained and content specific, at runtime



Thankyou

Questions?




